Previous |  Up |  Next

Article

Title: Abstract Weyl-type theorems (English)
Author: Berkani, Mohammed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 4
Year: 2016
Pages: 495-508
Summary lang: English
.
Category: math
.
Summary: In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained. (English)
Keyword: spectral valued function
Keyword: partitioning
Keyword: spectrum
Keyword: Weyl-type theorem
MSC: 47A10
MSC: 47A11
MSC: 47A53
idZBL: Zbl 06674859
idMR: MR3576796
DOI: 10.21136/MB.2016.0046-14
.
Date available: 2017-01-03T15:18:25Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145955
.
Reference: [1] Aiena, P., Peña, P.: Variations on Weyl's theorem.J. Math. Anal. Appl. 324 (2006), 566-579. Zbl 1101.47001, MR 2262492, 10.1016/j.jmaa.2005.11.027
Reference: [2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem.Glasg. Math. J. 48 (2006), 179-185. Zbl 1097.47012, MR 2224938, 10.1017/S0017089505002971
Reference: [3] Barnes, B. A.: Riesz points and Weyl's theorem.Integral Equations Oper. Theory 34 (1999), 187-196. Zbl 0948.47002, MR 1694707, 10.1007/BF01236471
Reference: [4] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475
Reference: [5] Berkani, M.: $B$-Weyl spectrum and poles of the resolvent.J. Math. Anal. Appl. 272 (2002), 596-603. Zbl 1043.47004, MR 1930862, 10.1016/S0022-247X(02)00179-8
Reference: [6] Berkani, M.: Index of $B$-Fredholm operators and generalization of a Weyl theorem.Proc. Am. Math. Soc. 130 (2002), 1717-1723. Zbl 0996.47015, MR 1887019, 10.1090/S0002-9939-01-06291-8
Reference: [7] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem.Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. Zbl 1116.47015, MR 2275483, 10.1007/s10114-005-0720-4
Reference: [8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. 69 (2003), 359-376. Zbl 1050.47014, MR 1991673
Reference: [9] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075
Reference: [10] Berkani, M., Zariouh, H.: Extended Weyl type theorems.Math. Bohem. 134 (2009), 369-378. Zbl 1211.47011, MR 2597232
Reference: [11] Berkani, M., Zariouh, H.: New extended Weyl type theorems.Mat. Vesn. 62 (2010), 145-154. Zbl 1258.47020, MR 2639143
Reference: [12] Cao, X. H.: A-Browder's theorem and generalized $a$-Weyl's theorem.Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. Zbl 1153.47009, MR 2307839, 10.1007/s10114-005-0870-4
Reference: [13] Curto, R. E., Han, Y. M.: Generalized Browder's and Weyl's theorems for Banach space operators.J. Math. Anal. Appl. 336 (2007), 1424-1442. Zbl 1131.47003, MR 2353025, 10.1016/j.jmaa.2007.03.060
Reference: [14] Djordjević, D. S.: Operators obeying $a$-Weyl's theorem.Publ. Math. 55 (1999), 283-298. Zbl 0938.47008, MR 1721837
Reference: [15] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity.Glasg. Math. J. 42 (2000), 479-486. Zbl 0979.47004, MR 1793814, 10.1017/S0017089500030147
Reference: [16] Duggal, B. P.: Polaroid operators and generalized Browder-Weyl theorems.Math. Proc. R. Ir. Acad. 108A (2008), 149-163. Zbl 1180.47006, MR 2475808, 10.3318/PRIA.2008.108.2.149
Reference: [17] Heuser, H. G.: Functional Analysis.John Wiley & Sons Chichester (1982). Zbl 0465.47001, MR 0640429
Reference: [18] Rakočević, V.: Operators obeying $a$-Weyl's theorem.Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. MR 1030982
Reference: [19] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 German (1909), 373-392, 402. 10.1007/BF03019655
.

Files

Files Size Format View
MathBohem_141-2016-4_7.pdf 268.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo