Previous |  Up |  Next

Article

Title: Exact controllability of linear dynamical systems: A geometrical approach (English)
Author: García-Planas, María Isabel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 1
Year: 2017
Pages: 37-47
Summary lang: English
.
Category: math
.
Summary: In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that are needed in order to steer the whole system toward any desired state. In this paper, we focus the study on the obtention of the set of all $B$ making the system $(A,B)$ exact controllable. (English)
Keyword: controllability
Keyword: exact controllability
Keyword: eigenvalue
Keyword: eigenvector
Keyword: linear system
MSC: 93B05
MSC: 93B25
MSC: 93B27
MSC: 93B60
idZBL: Zbl 06738480
idMR: MR3615477
DOI: 10.21136/AM.2017.0427-15
.
Date available: 2017-01-25T15:44:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145988
.
Reference: [1] Assan, J., Lafay, J. F., Perdon, A. M.: Computation of maximal pre-controllability submodules over a Noetherian ring.Syst. Control Lett. 37 (1999), 153-161. Zbl 0917.93024, MR 1751260, 10.1016/S0167-6911(99)00015-8
Reference: [2] Cardetti, F., Gordina, M.: A note on local controllability on Lie groups.Syst. Control Lett. 57 (2008), 978-979. Zbl 1148.93005, MR 2465147, 10.1016/j.sysconle.2008.06.001
Reference: [3] Chen, C.: Introduction to Linear System Theory.Holt, Rinehart and Winston Inc., New York (1970).
Reference: [4] García-Planas, M. I., Domínguez-García, J. L.: Alternative tests for functional and pointwise output-controllability of linear time-invariant systems.Syst. Control Lett. 62 (2013), 382-387. Zbl 1276.93016, MR 3038418, 10.1016/j.sysconle.2013.02.003
Reference: [5] Heniche, A., Kamwa, I.: Using measures of controllability and observability for input and output selection.IEEE International Conference on Control Applications 2 (2002), 1248-1251. 10.1109/CCA.2002.1038784
Reference: [6] Kundur, P.: Power System Stability and Control.McGraw-Hill, New York (1994).
Reference: [7] Lin, C.-T.: Structural controllability.IEEE Trans. Autom. Control 19 (1974), 201-208. Zbl 0282.93011, MR 0452870, 10.1109/TAC.1974.1100557
Reference: [8] Liu, Y., Slotine, J., Barabási, A.: Controllability of complex networks.Nature 473 (2011), 167-173. 10.1038/nature10011
Reference: [9] Shields, R. W., Pearson, J. B.: Structural controllability of multiinput linear systems.IEEE Trans. Autom. Control 21 (1976), 203-212. Zbl 0324.93007, MR 0462690, 10.1109/TAC.1976.1101198
Reference: [10] Yuan, Z., Zhao, C., Di, Z. R., Wang, W. X., Lai, Y. C.: Exact controllability of complex networks.Nature Communications 4 (2013), 1-12. MR 3275862, 10.1038/ncomms3447
Reference: [11] Yuan, Z., Zhao, C., Wang, W. X., Di, Z. R., Lai, Y. C.: Exact controllability of multiplex networks.New J. Phys. 16 (2014), 103036, 24 pages. MR 3275862, 10.1088/1367-2630/16/10/103036
.

Files

Files Size Format View
AplMat_62-2017-1_3.pdf 246.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo