Title:
|
Exact controllability of linear dynamical systems: A geometrical approach (English) |
Author:
|
García-Planas, María Isabel |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
37-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that are needed in order to steer the whole system toward any desired state. In this paper, we focus the study on the obtention of the set of all $B$ making the system $(A,B)$ exact controllable. (English) |
Keyword:
|
controllability |
Keyword:
|
exact controllability |
Keyword:
|
eigenvalue |
Keyword:
|
eigenvector |
Keyword:
|
linear system |
MSC:
|
93B05 |
MSC:
|
93B25 |
MSC:
|
93B27 |
MSC:
|
93B60 |
idZBL:
|
Zbl 06738480 |
idMR:
|
MR3615477 |
DOI:
|
10.21136/AM.2017.0427-15 |
. |
Date available:
|
2017-01-25T15:44:23Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145988 |
. |
Reference:
|
[1] Assan, J., Lafay, J. F., Perdon, A. M.: Computation of maximal pre-controllability submodules over a Noetherian ring.Syst. Control Lett. 37 (1999), 153-161. Zbl 0917.93024, MR 1751260, 10.1016/S0167-6911(99)00015-8 |
Reference:
|
[2] Cardetti, F., Gordina, M.: A note on local controllability on Lie groups.Syst. Control Lett. 57 (2008), 978-979. Zbl 1148.93005, MR 2465147, 10.1016/j.sysconle.2008.06.001 |
Reference:
|
[3] Chen, C.: Introduction to Linear System Theory.Holt, Rinehart and Winston Inc., New York (1970). |
Reference:
|
[4] García-Planas, M. I., Domínguez-García, J. L.: Alternative tests for functional and pointwise output-controllability of linear time-invariant systems.Syst. Control Lett. 62 (2013), 382-387. Zbl 1276.93016, MR 3038418, 10.1016/j.sysconle.2013.02.003 |
Reference:
|
[5] Heniche, A., Kamwa, I.: Using measures of controllability and observability for input and output selection.IEEE International Conference on Control Applications 2 (2002), 1248-1251. 10.1109/CCA.2002.1038784 |
Reference:
|
[6] Kundur, P.: Power System Stability and Control.McGraw-Hill, New York (1994). |
Reference:
|
[7] Lin, C.-T.: Structural controllability.IEEE Trans. Autom. Control 19 (1974), 201-208. Zbl 0282.93011, MR 0452870, 10.1109/TAC.1974.1100557 |
Reference:
|
[8] Liu, Y., Slotine, J., Barabási, A.: Controllability of complex networks.Nature 473 (2011), 167-173. 10.1038/nature10011 |
Reference:
|
[9] Shields, R. W., Pearson, J. B.: Structural controllability of multiinput linear systems.IEEE Trans. Autom. Control 21 (1976), 203-212. Zbl 0324.93007, MR 0462690, 10.1109/TAC.1976.1101198 |
Reference:
|
[10] Yuan, Z., Zhao, C., Di, Z. R., Wang, W. X., Lai, Y. C.: Exact controllability of complex networks.Nature Communications 4 (2013), 1-12. MR 3275862, 10.1038/ncomms3447 |
Reference:
|
[11] Yuan, Z., Zhao, C., Wang, W. X., Di, Z. R., Lai, Y. C.: Exact controllability of multiplex networks.New J. Phys. 16 (2014), 103036, 24 pages. MR 3275862, 10.1088/1367-2630/16/10/103036 |
. |