Previous |  Up |  Next

Article

Keywords:
practical Ulam-Hyers-Rassias stability; nonlinear equation
Summary:
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results.
References:
[1] Allgower, E. L., Georg, K.: Numerical Continuation Methods. An Introduction. Springer Series in Computational Mathematics 13 Springer, Berlin (1990). DOI 10.1007/978-3-642-61257-2 | MR 1059455 | Zbl 0717.65030
[2] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219 (2013), 4853-4864. DOI 10.1016/j.amc.2012.10.115 | MR 3001534 | Zbl 06447292
[3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). DOI 10.1007/b97366 | MR 1987382 | Zbl 1026.15004
[4] Berger, M. S.: Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). MR 0488101 | Zbl 0368.47001
[5] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. DOI 10.1007/BF02022967 | MR 0079154 | Zbl 0070.08201
[6] Burger, M., Ozawa, N., Thom, A.: On Ulam stability. Isr. J. Math. 193 (2013), 109-129. DOI 10.1007/s11856-012-0050-z | MR 3038548 | Zbl 1271.22003
[7] Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale. Univ. Vest Timişoara Timişoara (2007).
[8] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). DOI 10.1007/978-1-4613-8159-4 | MR 0660633 | Zbl 0487.47039
[9] Cimpean, D. S., Popa, D.: Hyers-Ulam stability of Euler's equation. Appl. Math. Lett. 24 (2011), 1539-1543. DOI 10.1016/j.aml.2011.03.042 | MR 2803705 | Zbl 1225.35051
[10] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation. Appl. Math. Lett. 26 (2013), 549-552. DOI 10.1016/j.aml.2012.12.014 | MR 3027761 | Zbl 1266.35014
[11] Hyers, D. H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. DOI 10.1073/pnas.27.4.222 | MR 0004076 | Zbl 0061.26403
[12] Hyers, D. H., Isac, G., Rassias, T. M.: Stability of Functional Equations in Several Vari- ables. Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). DOI 10.1007/978-1-4612-1790-9 | MR 1639801 | Zbl 0907.39025
[13] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). MR 1841182 | Zbl 0980.39024
[14] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990). MR 1089428 | Zbl 0753.34037
[15] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385 (2012), 86-91. DOI 10.1016/j.jmaa.2011.06.025 | MR 2832076 | Zbl 1236.39030
[16] Park, C.: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. Bull. Sci. Math. 132 (2008), 87-96. DOI 10.1016/j.bulsci.2006.07.004 | MR 2387819 | Zbl 1140.39016
[17] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381 (2011), 530-537. DOI 10.1016/j.jmaa.2011.02.051 | MR 2802090 | Zbl 1222.34069
[18] Rassias, T. M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300. DOI 10.1090/S0002-9939-1978-0507327-1 | MR 0507327 | Zbl 0398.47040
[19] Rus, I. A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), 103-107. MR 2676724 | Zbl 1224.34164
[20] Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics 5 Springer, New York (2010). DOI 10.1007/978-1-4419-1740-9 | MR 2561077 | Zbl 1195.34004
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). MR 0564653 | Zbl 0501.46003
[22] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). MR 0120127 | Zbl 0086.24101
[23] Wang, J., Fečkan, M.: Ulam-Hyers-Rassias stability for semilinear equations. Discontin. Nonlinearity Complex 3 (2014), 379-388. DOI 10.5890/DNC.2014.12.002 | Zbl 06459714
[24] Wang, J., Fečkan, M., Zhou, Y.: Ulam's type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395 (2012), 258-264. DOI 10.1016/j.jmaa.2012.05.040 | MR 2943620 | Zbl 1254.34022
[25] Wei, Y., Ding, J.: Representations for Moore-Penrose inverses in Hilbert spaces. Appl. Math. Lett. 14 (2001), 599-604. DOI 10.1016/S0893-9659(00)00200-7 | MR 1832670 | Zbl 0982.47003
Partner of
EuDML logo