Title:
|
Practical Ulam-Hyers-Rassias stability for nonlinear equations (English) |
Author:
|
Wang, Jin Rong |
Author:
|
Fečkan, Michal |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
142 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
47-56 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results. (English) |
Keyword:
|
practical Ulam-Hyers-Rassias stability |
Keyword:
|
nonlinear equation |
MSC:
|
39B82 |
MSC:
|
46T20 |
MSC:
|
47H10 |
MSC:
|
47H99 |
MSC:
|
47J05 |
idZBL:
|
Zbl 06738569 |
idMR:
|
MR3619986 |
DOI:
|
10.21136/MB.2017.0058-14 |
. |
Date available:
|
2017-02-21T17:21:22Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146008 |
. |
Reference:
|
[1] Allgower, E. L., Georg, K.: Numerical Continuation Methods. An Introduction.Springer Series in Computational Mathematics 13 Springer, Berlin (1990). Zbl 0717.65030, MR 1059455, 10.1007/978-3-642-61257-2 |
Reference:
|
[2] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators.Appl. Math. Comput. 219 (2013), 4853-4864. Zbl 06447292, MR 3001534, 10.1016/j.amc.2012.10.115 |
Reference:
|
[3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). Zbl 1026.15004, MR 1987382, 10.1007/b97366 |
Reference:
|
[4] Berger, M. S.: Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis.Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). Zbl 0368.47001, MR 0488101 |
Reference:
|
[5] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations.Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. Zbl 0070.08201, MR 0079154, 10.1007/BF02022967 |
Reference:
|
[6] Burger, M., Ozawa, N., Thom, A.: On Ulam stability.Isr. J. Math. 193 (2013), 109-129. Zbl 1271.22003, MR 3038548, 10.1007/s11856-012-0050-z |
Reference:
|
[7] Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale.Univ. Vest Timişoara Timişoara (2007). |
Reference:
|
[8] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory.Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). Zbl 0487.47039, MR 0660633, 10.1007/978-1-4613-8159-4 |
Reference:
|
[9] Cimpean, D. S., Popa, D.: Hyers-Ulam stability of Euler's equation.Appl. Math. Lett. 24 (2011), 1539-1543. Zbl 1225.35051, MR 2803705, 10.1016/j.aml.2011.03.042 |
Reference:
|
[10] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation.Appl. Math. Lett. 26 (2013), 549-552. Zbl 1266.35014, MR 3027761, 10.1016/j.aml.2012.12.014 |
Reference:
|
[11] Hyers, D. H.: On the stability of the linear functional equation.Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. Zbl 0061.26403, MR 0004076, 10.1073/pnas.27.4.222 |
Reference:
|
[12] Hyers, D. H., Isac, G., Rassias, T. M.: Stability of Functional Equations in Several Vari- ables.Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). Zbl 0907.39025, MR 1639801, 10.1007/978-1-4612-1790-9 |
Reference:
|
[13] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis.The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). Zbl 0980.39024, MR 1841182 |
Reference:
|
[14] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems.World Scientific, Singapore (1990). Zbl 0753.34037, MR 1089428 |
Reference:
|
[15] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1236.39030, MR 2832076, 10.1016/j.jmaa.2011.06.025 |
Reference:
|
[16] Park, C.: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras.Bull. Sci. Math. 132 (2008), 87-96. Zbl 1140.39016, MR 2387819, 10.1016/j.bulsci.2006.07.004 |
Reference:
|
[17] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051 |
Reference:
|
[18] Rassias, T. M.: On the stability of the linear mapping in Banach spaces.Proc. Am. Math. Soc. 72 (1978), 297-300. Zbl 0398.47040, MR 0507327, 10.1090/S0002-9939-1978-0507327-1 |
Reference:
|
[19] Rus, I. A.: Ulam stabilities of ordinary differential equations in a Banach space.Carpathian J. Math. 26 (2010), 103-107. Zbl 1224.34164, MR 2676724 |
Reference:
|
[20] Seydel, R.: Practical Bifurcation and Stability Analysis.Interdisciplinary Applied Mathematics 5 Springer, New York (2010). Zbl 1195.34004, MR 2561077, 10.1007/978-1-4419-1740-9 |
Reference:
|
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.John Wiley & Sons, New York (1980). Zbl 0501.46003, MR 0564653 |
Reference:
|
[22] Ulam, S. M.: A Collection of Mathematical Problems.Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). Zbl 0086.24101, MR 0120127 |
Reference:
|
[23] Wang, J., Fečkan, M.: Ulam-Hyers-Rassias stability for semilinear equations.Discontin. Nonlinearity Complex 3 (2014), 379-388. Zbl 06459714, 10.5890/DNC.2014.12.002 |
Reference:
|
[24] Wang, J., Fečkan, M., Zhou, Y.: Ulam's type stability of impulsive ordinary differential equations.J. Math. Anal. Appl. 395 (2012), 258-264. Zbl 1254.34022, MR 2943620, 10.1016/j.jmaa.2012.05.040 |
Reference:
|
[25] Wei, Y., Ding, J.: Representations for Moore-Penrose inverses in Hilbert spaces.Appl. Math. Lett. 14 (2001), 599-604. Zbl 0982.47003, MR 1832670, 10.1016/S0893-9659(00)00200-7 |
. |