Previous |  Up |  Next

Article

Title: On subgraphs without large components (English)
Author: Chappell, Glenn G.
Author: Gimbel, John
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 85-111
Summary lang: English
.
Category: math
.
Summary: We consider, for a positive integer $k$, induced subgraphs in which each component has order at most $k$. Such a subgraph is said to be $k$-divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a $k$-divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for $2$-coloring a planar triangle-free graph. Lastly, we consider Ramsey-type problems where graphs or their complements with large enough order must contain a large $k$-divided subgraph. We study the asymptotic behavior of ``$k$-divided Ramsey numbers''. We conclude by mentioning a number of open problems. (English)
Keyword: component
Keyword: independence
Keyword: graph coloring
Keyword: Ramsey number
MSC: 05C55
MSC: 05C69
MSC: 05C85
MSC: 68Q17
MSC: 68R10
idZBL: Zbl 06738572
idMR: MR3619989
DOI: 10.21136/MB.2017.0013-14
.
Date available: 2017-02-21T17:23:11Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146011
.
Reference: [1] Albertson, M.: Open Problem 2.The Theory and Applications of Graphs. Proc. 4th Int. Conf., Kalamazoo, 1980 (1981), John Wiley & Sons, New York. Zbl 0459.00006, MR 0634511
Reference: [2] Alon, N., Ding, G., Oporowski, B., Vertigan, D.: Partitioning into graphs with only small components.J. Comb. Theory, Ser. B 87 (2003), 231-243. Zbl 1023.05045, MR 1957474, 10.1016/S0095-8956(02)00006-0
Reference: [3] Berke, R.: Coloring and Transversals of Graphs. Ph.D. thesis.ETH, Zurich (2008).
Reference: [4] Boesch, F., Tindell, R.: Circulants and their connectivities.J. Graph Theory 8 (1984), 487-499. Zbl 0549.05048, MR 0766498, 10.1002/jgt.3190080406
Reference: [5] Burr, S. A.: Diagonal Ramsey numbers for small graphs.J. Graph Theory 7 (1983), 57-69. Zbl 0513.05041, MR 0693021, 10.1002/jgt.3190070108
Reference: [6] Burr, S. A., Erdős, P., Faudree, R. J., Schelp, R. H.: On the difference between consecutive Ramsey numbers.Util. Math. 35 (1989), 115-118. Zbl 0678.05039, MR 0992396
Reference: [7] Chappell, G. G.: GraphR [computer software]. August 26, 2016.Available at https://www.cs.uaf.edu/users/chappell/public_html/papers/graphr/.
Reference: [8] Chappell, G. G., Gimbel, J.: On defective Ramsey numbers.Avaible at https://www.cs.uaf.edu/users/chappell/public_html/papers/defram/.
Reference: [9] Chartrand, G., Lesniak, L., Zhang, P.: Graphs & Digraphs.CRC Press, Boca Raton (2011). Zbl 1211.05001, MR 2766107
Reference: [10] Cockayne, E. J., Mynhardt, C. M.: On 1-dependent Ramsey numbers for graphs.Discuss. Math., Graph Theory 19 (1999), 93-110. Zbl 0932.05061, MR 1704453, 10.7151/dmgt.1088
Reference: [11] Cowen, L. J., Cowen, R. H., Woodall, D. R.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency.J. Graph Theory 10 (1986), 187-195. Zbl 0596.05024, MR 0890224, 10.1002/jgt.3190100207
Reference: [12] Cowen, L., Goddard, W., Jesurum, C. E.: Defective coloring revisited.J. Graph Theory 24 (1997), 205-219. Zbl 0877.05019, MR 1431666, 10.1002/(SICI)1097-0118(199703)24
Reference: [13] Eaton, N., Hull, T.: Defective list colorings of planar graphs.Bull. Inst. Combin. Appl. 25 (1999), 79-87. Zbl 0916.05026, MR 1668108
Reference: [14] Ekim, T., Gimbel, J.: Some defective parameters in graphs.Graphs Combin. 29 (2013), 213-224. Zbl 1263.05028, MR 3027597, 10.1007/s00373-011-1111-5
Reference: [15] Era, H., Urabe, M.: On the $k$-independent sets of graphs.Proc. Fac. Sci. Tokai Univ. 26 (1991), 1-4. Zbl 0752.05032, MR 1148560
Reference: [16] Erdős, P.: Some remarks on the theory of graphs.Bull. Am. Math. Soc. 53 (1947), 292-294. Zbl 0032.19203, MR 0019911, 10.1090/S0002-9904-1947-08785-1
Reference: [17] Erdős, P., Szekeres, G.: A combinatorial problem in geometry.Compos. Math. 2 (1935), 463-470. Zbl 0012.27010, MR 1556929
Reference: [18] Esperet, L., Joret, G.: Colouring planar graphs with three colours and no large monochromatic components.Comb. Probab. Comput. 23 (2014), 551-570. Zbl 06325560, MR 3217360, 10.1017/S0963548314000170
Reference: [19] Esperet, L., Ochem, P.: Islands in graphs on surfaces.SIAM J. Discrete Math. 30 (2016), 206-219. Zbl 1329.05105, MR 3455135, 10.1137/140957883
Reference: [20] Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard.Electron. J. Comb. 11 (2004), research paper R46, 9 pages. Zbl 1053.05046, MR 2097312
Reference: [21] Fink, J. F., Jacobson, M. S.: On $n$-domination, $n$-dependence and forbidden subgraphs.Graph Theory with Applications to Algorithms and Computer Science. Proc. 5th Quadr. Int. Conf. on the Theory and Applications of Graphs with special emphasis on Algorithms and Computer Science Applications, Kalamazoo, 1984 (Y. Alavi et al., eds.) Wiley-Interscience Publication, John Wiley & Sons, New York (1985), 301-311. Zbl 0573.05050, MR 0812672
Reference: [22] Garey, M. R., Johnson, D. S.: The rectilinear Steiner tree problem is NP-complete.SIAM J. Appl. Math. 32 (1977), 826-834. Zbl 0396.05009, MR 0443426, 10.1137/0132071
Reference: [23] Garey, M. R., Johnson, D. S., Stockmeyer, L.: Some simplified NP-complete graph problems.Theor. Comput. Sci. 1 (1976), 237-267. Zbl 0338.05120, MR 0411240, 10.1016/0304-3975(76)90059-1
Reference: [24] Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph.Discrete Math. 272 (2003), 139-154. Zbl 1028.05032, MR 2009539, 10.1016/S0012-365X(03)00177-8
Reference: [25] Grötzsch, H.: Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel.Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 8 (1959), 109-120. Zbl 0089.39506, MR 0116320
Reference: [26] Haxell, P., Szabó, T., Tardos, G.: Bounded size components - partitions and transversals.J. Comb. Theory, Ser. B 88 (2003), 281-297. Zbl 1033.05083, MR 1983359, 10.1016/S0095-8956(03)00031-5
Reference: [27] Kleinberg, J., Motwani, R., Raghavan, P., Venkatasubramanian, S.: Storage management for evolving databases.Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS 97) (1997), 353-362.
Reference: [28] Linial, N., Matoušek, J., Sheffet, O., Tardos, G.: Graph colouring with no large monochromatic components.Comb. Probab. Comput. 17 (2008), 577-589. Zbl 1171.05021, MR 2433942, 10.1017/S0963548308009140
Reference: [29] Lortz, R., Mengersen, I.: Bounds on Ramsey numbers of certain complete bipartite graphs.Result. Math. 41 (2002), 140-149. Zbl 1009.05100, MR 1888725, 10.1007/BF03322761
Reference: [30] Lovász, L.: On decomposition of graphs.Stud. Sci. Math. Hung. 1 (1966), 237-238. Zbl 0151.33401, MR 0202630
Reference: [31] Matoušek, J., Přívětivý, A.: Large monochromatic components in two-colored grids.SIAM J. Discrete Math. 22 (2008), 295-311. Zbl 1159.05021, MR 2383243, 10.1137/070684112
Reference: [32] Nešetřil, J., Rapaud, A., Sopena, E.: Colorings and girth of oriented planar graphs.Discrete Math. 165/166 (1997), 519-530. Zbl 0873.05042, MR 1439297, 10.1016/S0012-365X(96)00198-7
Reference: [33] Radziszowski, S. P.: Small Ramsey numbers. Revision \# 14: January 12, 2014.Electron. J. Comb. DS1, Dynamic Surveys (electronic only) (1996), 94 pages. Zbl 0953.05048, MR 1670625
Reference: [34] Thomassen, C.: Five-coloring maps on surfaces.J. Comb. Theory, Ser. B 59 (1993), 89-105. Zbl 0794.05026, MR 1234386, 10.1006/jctb.1993.1057
Reference: [35] Thomassen, C.: A short list color proof of Grötzsch's theorem.J. Comb. Theory, Ser. B 88 (2003), 189-192. Zbl 1025.05022, MR 1974149, 10.1016/S0095-8956(03)00029-7
.

Files

Files Size Format View
MathBohem_142-2017-1_8.pdf 410.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo