Previous |  Up |  Next

Article

Title: An application of the generalized Bessel function (English)
Author: Darwish, Hanan
Author: Lashin, Abdel Moneim
Author: Hassan, Bashar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 75-84
Summary lang: English
.
Category: math
.
Summary: We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed. (English)
Keyword: Bessel operator
Keyword: starlike function
Keyword: convex function
Keyword: close-to-convex function
MSC: 30C45
MSC: 33C10
idZBL: Zbl 06738571
idMR: MR3619988
DOI: 10.21136/MB.2017.0006-16
.
Date available: 2017-02-21T17:22:20Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146010
.
Reference: [1] Bansal, D., Raina, R. K.: Some sufficient conditions for starlikeness using subordination criteria.Bull. Math. Anal. Appl. (electronic only) 2 (2010), 1-6. Zbl 1312.30005, MR 2747881
Reference: [2] Baricz, Á.: Some inequalities involving generalized Bessel functions.Math. Inequal. Appl. 10 (2007), 827-842. Zbl 1143.33004, MR 2358668, 10.7153/mia-10-76
Reference: [3] Baricz, Á.: Geometric properties of generalized Bessel functions.Publ. Math. 73 (2008), 155-178. Zbl 1156.33302, MR 2429033
Reference: [4] Baricz, Á., Deniz, E., Çağlar, M., Orhan, H.: Differential subordinations involving generalized Bessel functions.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 1255-1280. Zbl 1316.30010, MR 3352679, 10.1007/s40840-014-0079-8
Reference: [5] Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions.Integral Transforms Spec. Funct. 21 (2010), 641-653. Zbl 1205.30010, MR 2743533, 10.1080/10652460903516736
Reference: [6] Bernardi, S. D.: Convex and starlike univalent functions.Trans. Am. Math. Soc. 135 (1969), 429-446. Zbl 0172.09703, MR 0232920, 10.2307/1995025
Reference: [7] Deniz, E.: Convexity of integral operators involving generalized Bessel functions.Integral Transforms Spec. Funct. 24 (2013), 201-216. Zbl 1272.30016, MR 3021327, 10.1080/10652469.2012.685938
Reference: [8] Deniz, E., Orhan, H., Srivastava, H. M.: Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions.Taiwanese J. Math. 15 (2011), 883-917. Zbl 1242.30011, MR 2810187, 10.11650/twjm/1500406240
Reference: [9] Dziok, J., Srivastava, H. M.: Classes of analytic functions with the generalized hypergeometric function.Appl. Math. Comput. 103 (1999), 1-13. Zbl 0937.30010, MR 1686354, 10.1016/S0096-3003(98)10042-5
Reference: [10] Kamali, M., Srivastava, H. M.: A sufficient condition for starlikeness of analytic functions of Koebe type.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Article No. 57, 8 pages. Zbl 1058.30015, MR 2084867
Reference: [11] Libera, R. J.: Some radius of convexity problems.Duke Math. J. 31 (1964), 143-158. Zbl 0129.29403, MR 0160890, 10.1215/S0012-7094-64-03114-X
Reference: [12] Libera, R. J.: Some classes of regular univalent functions.Proc. Am. Math. Soc. 16 (1965), 755-758. Zbl 0158.07702, MR 0178131, 10.2307/2033917
Reference: [13] Livingston, A. E.: On the radius of univalence of certain analytic functions.Proc. Am. Math. Soc. 17 (1966), 352-357. Zbl 0158.07701, MR 0188423, 10.2307/2035165
Reference: [14] Miller, S.: Differential inequalities and Carathéodory functions.Bull. Am. Math. Soc. 81 (1975), 79-81. Zbl 0302.30003, MR 0355056, 10.1090/S0002-9904-1975-13643-3
Reference: [15] Miller, S. S., Mocanu, P. T.: Second order differential inequalities in the complex plane.J. Math. Anal. Appl. 65 (1978), 289-305. Zbl 0367.34005, MR 0506307, 10.1016/0022-247X(78)90181-6
Reference: [16] Nunokawa, M., Sokół, J.: An improvement of Ozaki's condition.Appl. Math. Comput. 219 (2013), 10768-10776. Zbl 1301.30017, MR 3064581, 10.1016/j.amc.2013.04.054
Reference: [17] Nunokawa, M., Sokół, J.: Remarks on some starlike functions.J. Inequal. Appl. (electronic only) 2013 (2013), Article 593, 8 pages. Zbl 1294.30025, MR 3213010, 10.1186/1029-242X-2013-593
Reference: [18] Siregar, S.: The starlikeness of analytic functions of Koebe type.Math. Comput. Modelling 54 (2011), 2928-2938. Zbl 1235.30012, MR 2841835, 10.1016/j.mcm.2011.07.014
Reference: [19] Sivasubramanian, S., Darus, M., Ibrahim, R. W.: On the starlikeness of certain class of analytic functions.Math. Comput. Modelling 54 (2011), 112-118. Zbl 1225.30016, MR 2801870, 10.1016/j.mcm.2011.01.042
Reference: [20] Sokół, J., Nunokawa, M.: On some sufficient conditions for univalence and starlikeness.J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 282, 11 pages. Zbl 1320.30035, MR 3017320, 10.1186/1029-242X-2012-282
Reference: [21] Srivastava, H. M., Lashin, A. Y.: Subordination properties of certain classes of multivalently analytic functions.Math. Comput. Modelling 52 (2010), 596-602. Zbl 1201.30019, MR 2658511, 10.1016/j.mcm.2010.04.005
Reference: [22] Tang, H., Deniz, E.: Third-order differential subordination results for analytic functions involving the generalized Bessel functions.Acta Math. Sci. Ser. B, Engl. Ed. 34 (2014), 1707-1719. Zbl 06500833, MR 3260746, 10.1016/S0252-9602(14)60116-8
Reference: [23] Tang, H., Srivastava, H. M., Deniz, E., Li, S.-H.: Third-order differential superordination involving the generalized Bessel functions.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 1669-1688. Zbl 1323.30029, MR 3393847, 10.1007/s40840-014-0108-7
Reference: [24] Watson, G. N.: A Treatis on The Theory of Bessel Functions.Cambridge University Press Cambridge, London (1966). Zbl 0174.36202, MR 0010746
.

Files

Files Size Format View
MathBohem_142-2017-1_7.pdf 255.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo