Title:
|
The weak Gelfand-Phillips property in spaces of compact operators (English) |
Author:
|
Ghenciu, Ioana |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
35-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For Banach spaces $X$ and $Y$, let $K_{w^*}(X^*,Y)$ denote the space of all $w^* - w$ continuous compact operators from $X^*$ to $Y$ endowed with the operator norm. A Banach space $X$ has the $wGP$ property if every Grothendieck subset of $X$ is relatively weakly compact. In this paper we study Banach spaces with property $wGP$. We investigate whether the spaces $K_{w^*}(X^*, Y)$ and $X\otimes_\epsilon Y$ have the $wGP$ property, when $X$ and $Y$ have the $wGP$ property. (English) |
Keyword:
|
Grothendieck sets |
Keyword:
|
property $wGP$ |
MSC:
|
46B20 |
MSC:
|
46B25 |
MSC:
|
46B28 |
idZBL:
|
Zbl 06736742 |
idMR:
|
MR3631679 |
DOI:
|
10.14712/1213-7243.2015.195 |
. |
Date available:
|
2017-03-12T16:36:58Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146026 |
. |
Reference:
|
[1] Bourgain J.: New Classes of $\mathcal{L}_p$-spaces.Lecture Notes in Mathematics, 889, Springer, Berlin-New York, 1981. MR 0639014 |
Reference:
|
[2] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 |
Reference:
|
[3] Bessaga C., Pelczynski A.: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–174. Zbl 0084.09805, MR 0115069 |
Reference:
|
[4] Collins H.S., Ruess W.: Weak compactness in the space of compact operators of vector valued functions.Pacific J. Math. 106 (1983), 45–71. MR 0694671, 10.2140/pjm.1983.106.45 |
Reference:
|
[5] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR 0737004 |
Reference:
|
[6] Diestel J.: A survey of results related to the Dunford-Pettis property.Contemporary Math. 2 (1980), 15–60. Zbl 0571.46013, MR 0621850, 10.1090/conm/002/621850 |
Reference:
|
[7] Diestel J., Uhl J.J., Jr.: Vector measures.Math. Surveys, 15, American Mathematical Society, Providence, RI, 1977. Zbl 0521.46035, MR 0453964 |
Reference:
|
[8] Cembranos P., Mendoza J.: Banach Spaces of Vector-Valued Functions.Lecture Notes in Mathematics, 1676, Springer, Berlin, 1997. Zbl 0902.46017, MR 1489231 |
Reference:
|
[9] Domanski P., Lindstrom M., Schluchtermann G.: Grothendieck operators on tensor products.Proc. Amer. Math. Soc. 125 (1997), 2285–2291. Zbl 0888.47013, MR 1372028, 10.1090/S0002-9939-97-03763-5 |
Reference:
|
[10] Drewnowski L.: On Banach spaces with the Gelfand-Phillips property.Math. Z. 193 (1986), 405–411. Zbl 0689.46004, MR 0862887, 10.1007/BF01229808 |
Reference:
|
[11] Drewnowski L., Emmanuele G.: On Banach spaces with the Gelfand-Phillips property II.Rend. Circolo Mat. Palermo 38 (1989), 377–391. Zbl 0689.46004, MR 1053378, 10.1007/BF02850021 |
Reference:
|
[12] Emmanuele G.: Banach spaces in which Dunford-Pettis sets are relatively compact.Arch. Math. 58 (1992), 477–485. Zbl 0761.46010, MR 1156580, 10.1007/BF01190118 |
Reference:
|
[13] Emmanuele G.: The (BD) property in $L^1(\mu,E)$.Indiana Univ. Math. J. 36 (1987), 229–230. MR 0877000 |
Reference:
|
[14] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell^1$.Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR 0861172 |
Reference:
|
[15] Fabian M., Habla P., Hájek P., Montesinos V., Zizler V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis.CMS Books in Mathematics, Springer, New York, 2011. MR 2766381 |
Reference:
|
[16] Fabian M.J.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces.Canad. Math. Soc. Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl 0883.46011, MR 1461271 |
Reference:
|
[17] Ghenciu I.: Weak precompactness and property $(V^*)$.Colloq. Math. 138 (2014), no. 2, 255–269. Zbl 1330.46023, MR 3312111, 10.4064/cm138-2-10 |
Reference:
|
[18] Ghenciu I., Lewis P.: Completely continuous operators.Colloq. Math. 126 (2012), no. 2, 231–256, doi:10.4064/cm126-2-7. Zbl 1256.46009, MR 2924252, 10.4064/cm126-2-7 |
Reference:
|
[19] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators.Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl 1167.46016, MR 2481977, 10.4064/ba56-3-7 |
Reference:
|
[20] Ghenciu I., Lewis P.: Almost weakly compact operators.Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl 1118.46016, MR 2287199, 10.4064/ba54-3-6 |
Reference:
|
[21] Hagler J., Odell E.: A Banach space not containing $\ell_1$, whose dual ball is not $weak^*$ sequentially compact.Illinois J. Math 22 (1978), 290–294. Zbl 0391.46015, MR 0482087 |
Reference:
|
[22] Haydon R., Levy M., Odell E.: On sequences without weak$^*$ convergent convex block subsequences.Proc. Amer. Soc. 101 (1987), 94–98. MR 0883407 |
Reference:
|
[23] Leung D.H.: A Gelfand-Phillips property with respect to the weak topology.Math. Nachr. 149 (1990), 177–181. Zbl 0765.46007, MR 1124803, 10.1002/mana.19901490114 |
Reference:
|
[24] Lindenstrauss J.: On nonseparable reflexive Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 967–970. Zbl 0156.36403, MR 0205040, 10.1090/S0002-9904-1966-11606-3 |
Reference:
|
[25] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II.Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer, Berlin-Heidelberg-New York, 1979. Zbl 0403.46022, MR 0540367 |
Reference:
|
[26] Pełczyński A.: On Banach spaces containing $L^1(\mu)$.Studia Math. 30 (1968), 231–246. MR 0232195, 10.4064/sm-30-2-231-246 |
Reference:
|
[27] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295 |
Reference:
|
[28] Pełczyński A., Semadeni Z.: Spaces of continuous functions III.Studia Math. 18 (1959), 211–222. Zbl 0091.27803, MR 0092942 |
Reference:
|
[29] Ruess W.: Duality and geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III. Proc. 3rd Paderborn Conference 1983, North-Holland Math. Studies, 90, North-Holland, Amsterdam, 1984, pp. 59–78. Zbl 0573.46007, MR 0761373 |
Reference:
|
[30] Ryan R.A.: Intoduction to Tensor Products of Banach Spaces.Springer, London, 2002. MR 1888309 |
Reference:
|
[31] Schlumprecht T.: Limited sets in Banach spaces.Dissertation, Munich, 1987. Zbl 0689.46005 |
Reference:
|
[32] Ülger A.: Continuous linear operators on $C(K,X)$ and pointwise weakly precompact subsets of $C(K,X)$.Math. Proc. Cambridge Philos. Soc. 111 (1992), 143–150. Zbl 0776.47017, MR 1131485, 10.1017/S0305004100075228 |
. |