Previous |  Up |  Next

Article

Title: Deformed Heisenberg algebra with reflection and $d$-orthogonal polynomials (English)
Author: Bouzeffour, Fethi
Author: Ben Mansour, Hanen
Author: Zaghouani, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 57-71
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of $d$-orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when $d=1$. The underlying algebraic framework allowed a systematic derivation of the recurrence relations, difference equation, lowering and rising operators and generating functions which these polynomials satisfy. (English)
Keyword: $d$-orthogonal polynomials
Keyword: matrix element
Keyword: coherent state
Keyword: hypergeometric function
Keyword: Meixner polynomials
Keyword: $d$-dimensional linear functional vector
MSC: 22E47
MSC: 33C45
MSC: 33D15
idZBL: Zbl 06738504
idMR: MR3632998
DOI: 10.21136/CMJ.2017.0358-15
.
Date available: 2017-03-13T12:05:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146040
.
Reference: [1] Aptekarev, A. I.: Multiple orthogonal polynomials.J. Comput. Appl. Math. 99 (1998), 423-447. Zbl 0958.42015, MR 1662713, 10.1016/S0377-0427(98)00175-7
Reference: [2] Arvesú, J., Coussement, J., Assche, W. Van: Some discrete multiple orthogonal polynomials.J. Comput. Appl. Math. 153 (2003), 19-45. Zbl 1021.33006, MR 1985676, 10.1016/S0377-0427(02)00597-6
Reference: [3] Cheikh, Y. Ben, Lamiri, I.: On obtaining dual sequences via inversion coefficients.Proc. of the 4th workshop on advanced special functions and solutions of PDE's Sabaudia, Italy, 2009, Lecture Notes of Seminario Interdisciplinare di Mathematica {\it 9} A. Cialdea et al. (2010), 41-56. Zbl 1216.44003
Reference: [4] Cheikh, Y. Ben, Zaghouani, A.: $d$-orthogonality via generating functions.J. Comput. Appl. Math. 199 (2007), 2-22. Zbl 1119.42009, MR 2267527, 10.1016/j.cam.2005.01.051
Reference: [5] Bouzeffour, F., Zagouhani, A.: $q$-oscillator algebra and $d$-orthogonal polynomials.J. Nonlinear Math. Phys. 20 (2013), 480-494. MR 3196458, 10.1080/14029251.2013.868262
Reference: [6] Genest, V. X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states.J. Phys. A, Math. Theor. 47 (2014), Article ID 215204, 16 pages. Zbl 1296.33025, MR 3207168, 10.1088/1751-8113/47/21/215204
Reference: [7] Genest, V. X., Vinet, L., Zhedanov, A.: $d$-orthogonal polynomials and $\frak {su}$ (2).J. Math. Anal. Appl. 390 (2012), 472-487. Zbl 1238.33004, MR 2890531, 10.1016/j.jmaa.2012.02.004
Reference: [8] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-analogues.Springer Monographs in Mathematics, Springer, Berlin (2010). Zbl 1200.33012, MR 2656096, 10.1007/978-3-642-05014-5
Reference: [9] Lamiri, I., Ouni, A.: $d$-orthogonality of some basic hypergeometric polynomials.Georgian Math. J. 20 (2013), 729-751. Zbl 1282.33027, MR 3139281, 10.1515/gmj-2013-0039
Reference: [10] Maroni, P.: L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux.Ann. Fac. Sci. Toulouse, Math. (5) 11 French (1989), 105-139. Zbl 0707.42019, MR 1425747, 10.5802/afst.672
Reference: [11] Plyushchay, M. S.: Deformed Heisenberg algebra with reflection.Nuclear Physics B 491 (1997), 619-634. Zbl 0937.81034, MR 1449322, 10.1016/S0550-3213(97)00065-5
Reference: [12] Rosenblum, M.: Generalized Hermite polynomials and the Bose-like oscillators calculus.Nonselfadjoint Operators and Related Topics. Workshop on Operator Theory and Its Applications Beersheva, Israel, 1992, Oper. Theory Adv. App. 73, Birkhäuser, Basel (1994), 369-396 A. Feintuch et al. Zbl 0826.33005, MR 1320555, 10.1007/978-3-0348-8522-5_15
Reference: [13] Assche, W. Van, Coussement, E.: Some classical multiple orthogonal polynomials.J. Comput. Appl. Math. 127 (2001), 317-347. Zbl 0969.33005, MR 1808581, 10.1016/S0377-0427(00)00503-3
Reference: [14] Iseghem, J. Van: Laplace transform inversion and Padé-type approximants.Appl. Numer. Math. 3 (1987), 529-538. Zbl 0634.65129, MR 0918793, 10.1016/S0377-0427(00)00503-3
Reference: [15] Vinet, L., Zhedanov, A.: Automorphisms of the Heisenberg-Weyl algebra and $d$-orthogonal polynomials.J. Math. Phys. 50 (2009), Article No. 033511, 19 pages. Zbl 1202.33018, MR 2510916, 10.1063/1.3087425
.

Files

Files Size Format View
CzechMathJ_67-2017-1_5.pdf 305.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo