Previous |  Up |  Next

Article

Title: Minimal Reeb vector fields on almost Kenmotsu manifolds (English)
Author: Wang, Yaning
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 73-86
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient condition for the Reeb vector field of a three dimensional non-Kenmotsu almost Kenmotsu manifold to be minimal is obtained. Using this result, we obtain some classifications of some types of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. Also, we give some characterizations of the minimality of the Reeb vector fields of $(k,\mu ,\nu )$-almost Kenmotsu manifolds. In addition, we prove that the Reeb vector field of an almost Kenmotsu manifold with conformal Reeb foliation is minimal. (English)
Keyword: almost Kenmotsu manifold
Keyword: Reeb vector field
Keyword: minimal vector field
Keyword: harmonic vector field
Keyword: Lie group
MSC: 53C25
MSC: 53C43
MSC: 53D15
idZBL: Zbl 06738505
idMR: MR3632999
DOI: 10.21136/CMJ.2017.0377-15
.
Date available: 2017-03-13T12:05:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146041
.
Reference: [1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203, Birkhäuser, Boston (2010). Zbl 1246.53001, MR 2682326, 10.1007/978-0-8176-4959-3
Reference: [2] Boeckx, E., Vanhecke, L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differ. Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222, 10.1016/S0926-2245(00)00021-8
Reference: [3] Cho, J. T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds.Differ. Geom. Appl. 35 (2014), 266-273. Zbl 1319.53094, MR 3254308, 10.1016/j.difgeo.2014.05.002
Reference: [4] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry.Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354. Zbl 1148.53034, MR 2341570, 10.36045/bbms/1179839227
Reference: [5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions.J. Geom. 93 (2009), 46-61. Zbl 1204.53025, MR 2501208, 10.1007/s00022-009-1974-2
Reference: [6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds with a condition of $\eta$-parallelism.Differ. Geom. Appl. 27 (2009), 671-679. Zbl 1183.53024, MR 2567845, 10.1016/j.difgeo.2009.03.007
Reference: [7] Gil-Medrano, O.: Relationship between volume and energy of vector fields.Differ. Geom. Appl. 15 (2001), 137-152. Zbl 1066.53068, MR 1857559, 10.1016/S0926-2245(01)00053-5
Reference: [8] Gil-Medrano, O., Llinares-Fuster, E.: Minimal unit vector fields.Tohoku Math. J., II. 54 (2002), 71-84. Zbl 1006.53053, MR 1878928, 10.2748/tmj/1113247180
Reference: [9] Gluck, H., Ziller, W.: On the volume of a unit vector field on the three-sphere.Comment. Math. Helv. 61 (1986), 177-192. Zbl 0605.53022, MR 0856085, 10.1007/BF02621910
Reference: [10] González-Dávila, J. C., Vanhecke, L.: Examples of minimal unit vector fields.Ann. Global Anal. Geom. 18 (2000), 385-404. Zbl 1005.53026, MR 1795104, 10.1023/A:1006788819180
Reference: [11] González-Dávila, J. C., Vanhecke, L.: Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds.J. Geom. 72 (2001), 65-76. Zbl 1005.53039, MR 1891456, 10.1007/s00022-001-8570-4
Reference: [12] González-Dávila, J. C., Vanhecke, L.: Invariant harmonic unit vector fields on Lie groups.Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), 377-403. Zbl 1097.53033, MR 1911197
Reference: [13] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors.Kodai Math. J. 4 (1981), 1-27. Zbl 0472.53043, MR 0615665, 10.2996/kmj/1138036310
Reference: [14] Kenmotsu, K.: A class of almost contact Riemannian manifolds.Tohoku Math. J., II. Ser. 24 (1972), 93-103. Zbl 0245.53040, MR 0319102, 10.2748/tmj/1178241594
Reference: [15] Koufogiorgos, T., Markellos, M., Papantoniou, V. J.: The harmonicity of the Reeb vector field on contact metric 3-manifolds.Pac. J. Math. 234 (2008), 325-344. Zbl 1154.53052, MR 2373452, 10.2140/pjm.2008.234.325
Reference: [16] Milnor, J. W.: Curvature of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293-329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3
Reference: [17] Olszak, Z.: Local conformal almost cosymplectic manifolds.Colloq. Math. 57 (1989), 73-87. Zbl 0702.53025, MR 1028604, 10.4064/cm-57-1-73-87
Reference: [18] Pastore, A. M., Saltarelli, V.: Almost Kenmotsu manifolds with conformal Reeb foliation.Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 655-666. Zbl 1237.53031, MR 2907610, 10.36045/bbms/1320763128
Reference: [19] Pastore, A. M., Saltarelli, V.: Generalized nullity distributions on almost Kenmotsu manifolds.Int. Electron. J. Geom. 4 (2011), 168-183. Zbl 1308.53118, MR 2929587
Reference: [20] Perrone, D.: Harmonic characteristic vector fields on contact metric three-manifolds.Bull. Aust. Math. Soc. 67 (2003), 305-315. Zbl 1034.53050, MR 1972720, 10.1017/S0004972700033773
Reference: [21] Perrone, D.: Almost contact metric manifolds whose Reeb vector field is a harmonic section.Acta Math. Hung. 138 (2013), 102-126. Zbl 1299.53132, MR 3015965, 10.1007/s10474-012-0228-1
Reference: [22] Perrone, D.: Minimal Reeb vector fields on almost cosymplectic manifolds.Kodai Math. J. 36 (2013), 258-274. Zbl 1277.53083, MR 3081246, 10.2996/kmj/1372337517
Reference: [23] Saltarelli, V.: Three-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions.Bull. Malays. Math. Sci. Soc. 38 (2015), 437-459. Zbl 1317.53044, MR 3323720, 10.1007/s40840-014-0029-5
Reference: [24] Vergara-Diaz, E., Wood, C. M.: Harmonic almost contact structures.Geom. Dedicata 123 (2006), 131-151. Zbl 1118.53043, MR 2299730, 10.1007/s10711-006-9112-x
.

Files

Files Size Format View
CzechMathJ_67-2017-1_6.pdf 304.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo