Title:
|
Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces (English) |
Author:
|
Xia, Zhinan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
123-141 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic $PC$-mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic $PC$-mild solution of a two-dimensional impulsive fractional predator-prey system with diffusion are investigated. (English) |
Keyword:
|
impulsive fractional integro-differential equation |
Keyword:
|
pseudo almost periodicity |
Keyword:
|
probability density |
Keyword:
|
fractional powers of operator |
MSC:
|
26A33 |
MSC:
|
34A37 |
MSC:
|
34C27 |
idZBL:
|
Zbl 06738508 |
idMR:
|
MR3633002 |
DOI:
|
10.21136/CMJ.2017.0398-15 |
. |
Date available:
|
2017-03-13T12:07:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146044 |
. |
Reference:
|
[1] Adolfsson, K., Enelund, J., Olsson, P.: On the fractional order model of viscoelasticity.Mech. Time-Depend. Mat. 9 (2005), 15-34. 10.1007/s11043-005-3442-1 |
Reference:
|
[2] Dads, E. Ait, Arino, O.: Exponential dichotomy and existence of pseudo almost-periodic solutions of some differential equations.Nonlinear Anal., Theory Methods Appl. 27 (1996), 369-386. Zbl 0855.34055, MR 1393143, 10.1016/0362-546X(95)00027-S |
Reference:
|
[3] Akhmet, M. U., Beklioglu, M., Ergenc, T., Tkachenko, V. I.: An impulsive ratio-dependent predator-prey system with diffusion.Nonlinear Anal., Real World Appl. 7 (2006), 1255-1267. Zbl 1114.35097, MR 2260913, 10.1016/j.nonrwa.2005.11.007 |
Reference:
|
[4] Cao, J., Yang, Q., Huang, Z.: Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 224-234. Zbl 1213.34089, MR 2734991, 10.1016/j.na.2010.08.036 |
Reference:
|
[5] Chang, Y. K., Zhang, R., N'Guérékata, G. M.: Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations.Comput. Math. Appl. 64 (2012), 3160-3170. Zbl 1268.34010, MR 2989344, 10.1016/j.camwa.2012.02.039 |
Reference:
|
[6] Chérif, F.: Pseudo almost periodic solutions of impulsive differential equations with delay.Differ. Equ. Dyn. Syst. 22 (2014), 73-91. Zbl 1298.34132, MR 3149175, 10.1007/s12591-012-0156-0 |
Reference:
|
[7] Debbouche, A., El-borai, M. M.: Weak almost periodic and optimal mild solutions of fractional evolution equations.Electron. J. Differ. Equ. (electronic only) 2009 (2009), No. 46, 8 pages. Zbl 1171.34331, MR 2495851 |
Reference:
|
[8] Diagana, T., N'Guérékata, G. M.: Pseudo almost periodic mild solutions to hyperbolic evolution equations in intermediate Banach spaces.Appl. Anal. 85 (2006), 769-780. Zbl 1103.34051, MR 2232421, 10.1080/00036810600708499 |
Reference:
|
[9] Ding, H.-S., Liang, J., N'Guérékata, G. M., Xiao, T. J.: Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations.Math. Comput. Modelling 45 (2007), 579-584. Zbl 1165.34387, MR 2286345, 10.1016/j.mcm.2006.07.006 |
Reference:
|
[10] Enelund, M., Olsson, P.: Damping described by fading memory-analysis and application to fractional derivative models.Int. J. Solids Struct. 36 (1999), 939-970. Zbl 0936.74023, MR 1666097, 10.1016/S0020-7683(97)00339-9 |
Reference:
|
[11] Fink, A. M.: Almost Periodic Differential Equations.Lecture Notes in Mathematics 377, Springer, New York (1974). Zbl 0325.34039, MR 0460799, 10.1007/BFb0070324 |
Reference:
|
[12] Henríquez, H. R., Andrade, B. de, Rabelo, M.: Existence of almost periodic solutions for a class of abstract impulsive differential equations.ISRN Math. Anal. 2011 (2011), Article ID 632687, 21 pages. Zbl 1242.34110, MR 2784886, 10.5402/2011/632687 |
Reference:
|
[13] Hong, J., Obaya, R., Sanz, A.: Almost-periodic-type solutions of some differential equations with piecewise constant argument.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 45 (2001), 661-688. Zbl 0996.34062, MR 1841201, 10.1016/S0362-546X(98)00296-X |
Reference:
|
[14] Li, Y., Wang, C.: Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales.Adv. Difference Equ. 2012 (2012), Article ID 77, 24 pages. Zbl 1294.34085, MR 2946504, 10.1186/1687-1847-2012-77 |
Reference:
|
[15] Liu, J., Zhang, C.: Existence and stability of almost periodic solutions for impulsive differential equations.Adv. Difference Equ. 2012 (2012), Article ID 34, 14 pages. Zbl 1291.34076, MR 2935667, 10.1186/1687-1847-2012-34 |
Reference:
|
[16] Liu, J., Zhang, C.: Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations.Adv. Difference Equ. 2013 (2013), 2013:11, 21 pages. MR 3019356, 10.1186/1687-1847-2013-11 |
Reference:
|
[17] Liu, J., Zhang, C.: Existence and stability of almost periodic solutions to impulsive stochastic differential equations.Cubo 15 (2013), 77-96. Zbl 1292.34054, MR 3087596, 10.4067/s0719-06462013000100005 |
Reference:
|
[18] Liu, J., Zhang, C.: Existence of almost periodic solutions for impulsive neutral functional differential equations.Abstr. Appl. Anal. 2014 (2014), Article ID 782018, 11 pages. MR 3251537, doi.org/10.1155/2014/782018 |
Reference:
|
[19] Pazy, A.: Semigroup of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1 |
Reference:
|
[20] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022 |
Reference:
|
[21] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science. Series A. 14, World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787, 10.1142/9789812798664 |
Reference:
|
[22] Stamov, G. T.: Almost Periodic Solutions of Impulsive Differential Equations.Lecture Notes in Mathematics 2047, Springer, Berlin (2012). Zbl 1255.34001, MR 2934087, 10.1007/978-3-642-27546-3 |
Reference:
|
[23] Stamov, G. T., Alzabut, J. O.: Almost periodic solutions for abstract impulsive differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2457-2464. Zbl 1190.34067, MR 2577811, 10.1016/j.na.2009.10.042 |
Reference:
|
[24] Stamov, G. T., Stamova, I. M.: Almost periodic solutions for impulsive fractional differential equations.Dyn. Syst. 29 (2014), 119-132. Zbl 1320.34012, MR 3170642, 10.1080/14689367.2013.854737 |
Reference:
|
[25] Wang, J. R., Fečkan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations.Dyn. Partial Differ. Equ. 8 (2011), 345-361. Zbl 1264.34014, MR 2901608, 10.4310/DPDE.2011.v8.n4.a3 |
Reference:
|
[26] Zhang, C.: Pseudo almost perioidc solutions of some differential equations.J. Math. Anal. Appl. 181 (1994), 62-76. Zbl 0796.34029, MR 1257954, 10.1006/jmaa.1994.1005 |
Reference:
|
[27] Zhang, C.: Pseudo almost perioidc solutions of some differential equations. II.J. Math. Anal. Appl. 192 (1995), 543-561. Zbl 0826.34040, MR 1332227, 10.1006/jmaa.1995.1189 |
. |