Previous |  Up |  Next

Article

Title: Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces (English)
Author: Xia, Zhinan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 123-141
Summary lang: English
.
Category: math
.
Summary: In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic $PC$-mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic $PC$-mild solution of a two-dimensional impulsive fractional predator-prey system with diffusion are investigated. (English)
Keyword: impulsive fractional integro-differential equation
Keyword: pseudo almost periodicity
Keyword: probability density
Keyword: fractional powers of operator
MSC: 26A33
MSC: 34A37
MSC: 34C27
idZBL: Zbl 06738508
idMR: MR3633002
DOI: 10.21136/CMJ.2017.0398-15
.
Date available: 2017-03-13T12:07:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146044
.
Reference: [1] Adolfsson, K., Enelund, J., Olsson, P.: On the fractional order model of viscoelasticity.Mech. Time-Depend. Mat. 9 (2005), 15-34. 10.1007/s11043-005-3442-1
Reference: [2] Dads, E. Ait, Arino, O.: Exponential dichotomy and existence of pseudo almost-periodic solutions of some differential equations.Nonlinear Anal., Theory Methods Appl. 27 (1996), 369-386. Zbl 0855.34055, MR 1393143, 10.1016/0362-546X(95)00027-S
Reference: [3] Akhmet, M. U., Beklioglu, M., Ergenc, T., Tkachenko, V. I.: An impulsive ratio-dependent predator-prey system with diffusion.Nonlinear Anal., Real World Appl. 7 (2006), 1255-1267. Zbl 1114.35097, MR 2260913, 10.1016/j.nonrwa.2005.11.007
Reference: [4] Cao, J., Yang, Q., Huang, Z.: Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 224-234. Zbl 1213.34089, MR 2734991, 10.1016/j.na.2010.08.036
Reference: [5] Chang, Y. K., Zhang, R., N'Guérékata, G. M.: Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations.Comput. Math. Appl. 64 (2012), 3160-3170. Zbl 1268.34010, MR 2989344, 10.1016/j.camwa.2012.02.039
Reference: [6] Chérif, F.: Pseudo almost periodic solutions of impulsive differential equations with delay.Differ. Equ. Dyn. Syst. 22 (2014), 73-91. Zbl 1298.34132, MR 3149175, 10.1007/s12591-012-0156-0
Reference: [7] Debbouche, A., El-borai, M. M.: Weak almost periodic and optimal mild solutions of fractional evolution equations.Electron. J. Differ. Equ. (electronic only) 2009 (2009), No. 46, 8 pages. Zbl 1171.34331, MR 2495851
Reference: [8] Diagana, T., N'Guérékata, G. M.: Pseudo almost periodic mild solutions to hyperbolic evolution equations in intermediate Banach spaces.Appl. Anal. 85 (2006), 769-780. Zbl 1103.34051, MR 2232421, 10.1080/00036810600708499
Reference: [9] Ding, H.-S., Liang, J., N'Guérékata, G. M., Xiao, T. J.: Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations.Math. Comput. Modelling 45 (2007), 579-584. Zbl 1165.34387, MR 2286345, 10.1016/j.mcm.2006.07.006
Reference: [10] Enelund, M., Olsson, P.: Damping described by fading memory-analysis and application to fractional derivative models.Int. J. Solids Struct. 36 (1999), 939-970. Zbl 0936.74023, MR 1666097, 10.1016/S0020-7683(97)00339-9
Reference: [11] Fink, A. M.: Almost Periodic Differential Equations.Lecture Notes in Mathematics 377, Springer, New York (1974). Zbl 0325.34039, MR 0460799, 10.1007/BFb0070324
Reference: [12] Henríquez, H. R., Andrade, B. de, Rabelo, M.: Existence of almost periodic solutions for a class of abstract impulsive differential equations.ISRN Math. Anal. 2011 (2011), Article ID 632687, 21 pages. Zbl 1242.34110, MR 2784886, 10.5402/2011/632687
Reference: [13] Hong, J., Obaya, R., Sanz, A.: Almost-periodic-type solutions of some differential equations with piecewise constant argument.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 45 (2001), 661-688. Zbl 0996.34062, MR 1841201, 10.1016/S0362-546X(98)00296-X
Reference: [14] Li, Y., Wang, C.: Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales.Adv. Difference Equ. 2012 (2012), Article ID 77, 24 pages. Zbl 1294.34085, MR 2946504, 10.1186/1687-1847-2012-77
Reference: [15] Liu, J., Zhang, C.: Existence and stability of almost periodic solutions for impulsive differential equations.Adv. Difference Equ. 2012 (2012), Article ID 34, 14 pages. Zbl 1291.34076, MR 2935667, 10.1186/1687-1847-2012-34
Reference: [16] Liu, J., Zhang, C.: Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations.Adv. Difference Equ. 2013 (2013), 2013:11, 21 pages. MR 3019356, 10.1186/1687-1847-2013-11
Reference: [17] Liu, J., Zhang, C.: Existence and stability of almost periodic solutions to impulsive stochastic differential equations.Cubo 15 (2013), 77-96. Zbl 1292.34054, MR 3087596, 10.4067/s0719-06462013000100005
Reference: [18] Liu, J., Zhang, C.: Existence of almost periodic solutions for impulsive neutral functional differential equations.Abstr. Appl. Anal. 2014 (2014), Article ID 782018, 11 pages. MR 3251537, doi.org/10.1155/2014/782018
Reference: [19] Pazy, A.: Semigroup of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [20] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [21] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science. Series A. 14, World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787, 10.1142/9789812798664
Reference: [22] Stamov, G. T.: Almost Periodic Solutions of Impulsive Differential Equations.Lecture Notes in Mathematics 2047, Springer, Berlin (2012). Zbl 1255.34001, MR 2934087, 10.1007/978-3-642-27546-3
Reference: [23] Stamov, G. T., Alzabut, J. O.: Almost periodic solutions for abstract impulsive differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2457-2464. Zbl 1190.34067, MR 2577811, 10.1016/j.na.2009.10.042
Reference: [24] Stamov, G. T., Stamova, I. M.: Almost periodic solutions for impulsive fractional differential equations.Dyn. Syst. 29 (2014), 119-132. Zbl 1320.34012, MR 3170642, 10.1080/14689367.2013.854737
Reference: [25] Wang, J. R., Fečkan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations.Dyn. Partial Differ. Equ. 8 (2011), 345-361. Zbl 1264.34014, MR 2901608, 10.4310/DPDE.2011.v8.n4.a3
Reference: [26] Zhang, C.: Pseudo almost perioidc solutions of some differential equations.J. Math. Anal. Appl. 181 (1994), 62-76. Zbl 0796.34029, MR 1257954, 10.1006/jmaa.1994.1005
Reference: [27] Zhang, C.: Pseudo almost perioidc solutions of some differential equations. II.J. Math. Anal. Appl. 192 (1995), 543-561. Zbl 0826.34040, MR 1332227, 10.1006/jmaa.1995.1189
.

Files

Files Size Format View
CzechMathJ_67-2017-1_9.pdf 340.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo