Previous |  Up |  Next

Article

Title: On the quantum groups and semigroups of maps between noncommutative spaces (English)
Author: Sadr, Maysam Maysami
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 97-121
Summary lang: English
.
Category: math
.
Summary: We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are introduced: quantum group of gauge transformations, Pontryagin dual of a quantum group, and Galois-Hopf-algebra of an algebra extension. (English)
Keyword: Hopf-algebra
Keyword: bialgebra
Keyword: quantum group
Keyword: noncommutative geometry
MSC: 16T05
MSC: 16T10
MSC: 16T20
MSC: 58B34
idZBL: Zbl 06738507
idMR: MR3633001
DOI: 10.21136/CMJ.2017.0393-15
.
Date available: 2017-03-13T12:06:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146043
.
Reference: [1] Banica, T.: Quantum automorphism groups of small metric spaces.Pac. J. Math. 219 (2005), 27-51. Zbl 1104.46039, MR 2174219, 10.2140/pjm.2005.219.27
Reference: [2] Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey.Noncommutative Harmonic Analysis with Applications to Probability Papers presented at the 9th Workshop, Będlewo, Poland, 2006, Banach Center Publications 78, Polish Academy of Sciences, Institute of Mathematics, Warsaw M. Bożejko et al. (2008), 13-34. Zbl 1140.46329, MR 2402345
Reference: [3] Baues, H. J.: Algebraic Homotopy.Cambridge Studies in Advanced Mathematics 15, Cambridge University Press, Cambridge (1989). Zbl 0688.55001, MR 0985099
Reference: [4] Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces.Commun. Math. Phys. 157 (1993), 591-638. Zbl 0817.58003, MR 1243712, 10.1007/BF02096884
Reference: [5] Gersten, S. M.: Homotopy theory of rings.J. Algebra 19 (1971), 396-415. Zbl 0264.18009, MR 0291253, 10.1016/0021-8693(71)90098-6
Reference: [6] Hovey, M., Palmieri, J. H., Strickland, N. P.: Axiomatic stable homotopy theory.Mem. Am. Math. Soc. Vol. 128 (1997), 114 pages. Zbl 0881.55001, MR 1388895, 10.1090/memo/0610
Reference: [7] Jardine, J. F.: Algebraic homotopy theory.Can. J. Math. 33 (1981), 302-319. Zbl 0444.55018, MR 0617621, 10.4153/CJM-1981-025-9
Reference: [8] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189, Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [9] Majid, S.: Foundations of Quantum Group Theory.Cambridge Univ. Press, Cambridge (1995). Zbl 0857.17009, MR 1381692
Reference: [10] May, J. P.: Picard groups, Grothendieck rings, and Burnside rings of categories.Adv. Math. 163 (2001), 1-16. Zbl 0994.18004, MR 1867201, 10.1006/aima.2001.1996
Reference: [11] Milne, J. S.: Basic Theory of Affine Group Schemes.Available online: www.jmilne.org /math/CourseNotes/AGS.pdf (2012).
Reference: [12] Podleś, P.: Quantum spaces and their symmetry groups.PhD Thesis, Department of Mathematical Methods in Physics Faculty of Physics, Warsaw University (1989).
Reference: [13] Sadr, M. M.: A kind of compact quantum semigroups.Int. J. Math. Math. Sci. 2012 (2012), Article ID 725270, 10 pages. Zbl 1267.46079, MR 3009563, 10.1155/2012/725270
Reference: [14] Skalski, A., Sołtan, P. M.: Quantum families of invertible maps and related problems.Can. J. Math. 68 (2016), 698-720. Zbl 06589338, MR 3492633, 10.4153/CJM-2015-037-9
Reference: [15] Sołtan, P. M.: Quantum families of maps and quantum semigroups on finite quantum spaces.J. Geom. Phys. 59 (2009), 354-368. Zbl 1160.58007, MR 2501746, 10.1016/j.geomphys.2008.11.007
Reference: [16] Sołtan, P. M.: Quantum $\rm SO(3)$ groups and quantum group actions on $M_2$.J. Noncommut. Geom. 4 (2010), 1-28. Zbl 1194.46108, MR 2575388, 10.4171/JNCG/48
Reference: [17] Sołtan, P. M.: On quantum maps into quantum semigroups.Houston J. Math. 40 (2014), 779-790. Zbl 1318.46051, MR 3275623
Reference: [18] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [19] Wang, S.: Free products of compact quantum groups.Commun. Math. Phys. 167 (1995), 671-692. Zbl 0838.46057, MR 1316765, 10.1007/BF02101540
Reference: [20] Wang, S.: Quantum symmetry groups of finite spaces.Commun. Math. Phys. 195 (1998), 195-211. Zbl 1013.17008, MR 1637425, 10.1007/s002200050385
Reference: [21] Woronowicz, S. L.: Pseudospaces, pseudogroups and Pontrjagin duality.Mathematical Problems in Theoretical Physics Proc. Int. Conf. on Mathematical Physics, Lausanne, 1979, Lect. Notes Phys. Vol. 116, Springer, Berlin 407-412 (1980). Zbl 03810280, MR 0582650, 10.1007/3-540-09964-6_354
.

Files

Files Size Format View
CzechMathJ_67-2017-1_8.pdf 401.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo