Previous |  Up |  Next

Article

Title: Some results on the annihilator graph of a commutative ring (English)
Author: Afkhami, Mojgan
Author: Khashyarmanesh, Kazem
Author: Rajabi, Zohreh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 151-169
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \neq {\rm ann}_R(x)\cup {\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace $. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \geq 1$. (English)
Keyword: annihilator graph
Keyword: zero-divisor graph
Keyword: outerplanar
Keyword: ring-graph
Keyword: cut-vertex
Keyword: clique number
Keyword: weakly perfect
Keyword: chromatic number
Keyword: polynomial ring
Keyword: ring of fractions
MSC: 05C75
MSC: 05C99
MSC: 13A99
idZBL: Zbl 06738510
idMR: MR3633004
DOI: 10.21136/CMJ.2017.0436-15
.
Date available: 2017-03-13T12:08:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146046
.
Reference: [1] Afkhami, M.: When the comaximal and zero-divisor graphs are ring graphs and outerplanar.Rocky Mt. J. Math. 44 (2014), 1745-1761. Zbl 1306.05092, MR 3310946, 10.1216/RMJ-2014-44-6-1745
Reference: [2] Afkhami, M., Barati, Z., Khashyarmanesh, K.: When the unit, unitary and total graphs are ring graphs and outerplanar.Rocky Mt. J. Math. 44 (2014), 705-716. Zbl 1301.05075, MR 3264477, 10.1216/RMJ-2014-44-3-705
Reference: [3] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete {$r$}-partite graph.J. Algebra 270 (2003), 169-180. Zbl 1032.13014, MR 2016655, 10.1016/S0021-8693(03)00370-3
Reference: [4] D. F. Anderson, M. C. Axtell, J. A. Stickles, Jr.: Zero-divisor graphs in commutative rings.Commutative Algebra. Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. Zbl 1225.13002, MR 2762487, 10.1007/978-1-4419-6990-3_2
Reference: [5] Anderson, D. F., Badawi, A.: On the zero-divisor graph of a ring.Commun. Algebra 36 (2008), 3073-3092. Zbl 1152.13001, MR 2440301, 10.1080/00927870802110888
Reference: [6] Anderson, D. F., Badawi, A.: The total graph of a commutative ring.J. Algebra 320 (2008), 2706-2719. Zbl 1158.13001, MR 2441996, 10.1016/j.jalgebra.2008.06.028
Reference: [7] Anderson, D. F., Levy, R., Shapiro, J.: Zero-divisor graphs, von Neumann regular rings, and Boolean algebras.J. Pure Appl. Algebra 180 (2003), 221-241. Zbl 1076.13001, MR 1966657, 10.1016/S0022-4049(02)00250-5
Reference: [8] Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434-447. Zbl 0941.05062, MR 1700509, 10.1006/jabr.1998.7840
Reference: [9] Anderson, D. D., Naseer, M.: Beck's coloring of a commutative ring.J. Algebra 159 (1993), 500-514. Zbl 0798.05067, MR 1231228, 10.1006/jabr.1993.1171
Reference: [10] Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S.: Unit graphs associated with rings.Commun. Algebra 38 (2010), 2851-2871. Zbl 1219.05150, MR 2730284, 10.1080/00927870903095574
Reference: [11] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Series in Mathematics, Addison-Wesley Publishing Company, Reading, London (1969). Zbl 0175.03601, MR 0242802
Reference: [12] Badawi, A.: On the annihilator graph of a commutative ring.Commun. Algebra 42 (2014), 108-121. Zbl 1295.13006, MR 3169557, 10.1080/00927872.2012.707262
Reference: [13] Badawi, A.: On the dot product graph of a commutative ring.Commun. Algebra 43 (2015), 43-50. Zbl 1316.13005, MR 3240402, 10.1080/00927872.2014.897188
Reference: [14] Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K.: On the associated graphs to a commutative ring.J. Algebra Appl. 11 (2012), 1250037, 17 pages. Zbl 1238.13015, MR 2925450, 10.1142/S0219498811005610
Reference: [15] Beck, I.: Coloring of commutative rings.J. Algebra 116 (1988), 208-226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [16] Belshoff, R., Chapman, J.: Planar zero-divisor graphs.J. Algebra 316 (2007), 471-480. Zbl 1129.13028, MR 2354873, 10.1016/j.jalgebra.2007.01.049
Reference: [17] Coté, B., Ewing, C., Huhn, M., Plaut, C. M., Weber, D.: Cut-sets in zero-divisor graphs of finite commutative rings.Commun. Algebra 39 (2011), 2849-2861. Zbl 1228.13011, MR 2834134, 10.1080/00927872.2010.489534
Reference: [18] Gitler, I., Reyes, E., Villarreal, R. H.: Ring graphs and complete intersection toric ideals.Discrete Math. 310 (2010), 430-441. Zbl 1198.05089, MR 2564795, 10.1016/j.disc.2009.03.020
Reference: [19] Kelarev, A.: Graph Algebras and Automata.Pure and Applied Mathematics 257, Marcel Dekker, New York (2003). Zbl 1070.68097, MR 2064147
Reference: [20] Kelarev, A.: Labelled Cayley graphs and minimal automata.Australas. J. Comb. 30 (2004), 95-101. Zbl 1152.68482, MR 2080457
Reference: [21] Kelarev, A., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: The influence of asymmetries.Discrete Math. 309 (2009), 5360-5369. Zbl 1206.05050, MR 2548552, 10.1016/j.disc.2008.11.030
Reference: [22] Maimani, H. R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings.J. Algebra 319 (2008), 1801-1808. Zbl 1141.13008, MR 2383067, 10.1016/j.jalgebra.2007.02.003
Reference: [23] West, D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River (1996). Zbl 0845.05001, MR 1367739
.

Files

Files Size Format View
CzechMathJ_67-2017-1_11.pdf 367.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo