Previous |  Up |  Next

Article

Title: Functions of finite fractional variation and their applications to fractional impulsive equations (English)
Author: Idczak, Dariusz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 171-195
Summary lang: English
.
Category: math
.
Summary: We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term---we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures. (English)
Keyword: finite fractional variation
Keyword: weak $\sigma $-additive fractional
Keyword: derivative
Keyword: fractional impulsive equation
Keyword: Dirac measure
Keyword: Cauchy formula
MSC: 26A45
MSC: 34A37
idZBL: Zbl 06738511
idMR: MR3633005
DOI: 10.21136/CMJ.2017.0455-15
.
Date available: 2017-03-13T12:08:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146047
.
Reference: [1] Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H.: Impulsive semilinear neutral functional differential inclusions with multivalued jumps.Appl. Math., Praha 56 (2011), 227-250. Zbl 1224.34207, MR 2810245, 10.1007/s10492-011-0004-5
Reference: [2] Bainov, D. D., Simeonov, P. S.: Systems with Impulse Effect. Stability, Theory and Applications.Ellis Horwood Series in Mathematics and Its Applications, Ellis Horwood Limited, Chichester; Halsted Press, New York (1989). Zbl 0683.34032, MR 1010418
Reference: [3] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions.Contemporary Mathematics and Its Applications 2, Hindawi Publishing Corporation, New York (2006). Zbl 1130.34003, MR 2322133, 10.1155/9789775945501
Reference: [4] Benchohra, M., Slimani, B. A.: Existence and uniqueness of solutions to impulsive fractional differential equations.Electron. J. Differ. Equ. (electronic only) 2009 (2009), Paper No. 10, 11 pages. Zbl 1178.34004, MR 2471119
Reference: [5] Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations.Fract. Calc. Appl. Anal. 17 (2014), 717-744. Zbl 1308.34010, MR 3260304, 10.2478/s13540-014-0196-y
Reference: [6] Bourdin, L.: Existence of a weak solution for fractional Euler-Lagrange equations.J. Math. Anal. Appl. 399 (2013), 239-251. Zbl 06125381, MR 2993851, 10.1016/j.jmaa.2012.10.008
Reference: [7] Bourdin, L., Idczak, D.: A fractional fundamental lemma and a fractional integration by parts formula---Applications to critical points of Bolza functionals and to linear boundary value problems.Adv. Differ. Equ. 20 (2015), 213-232. Zbl 1309.26007, MR 3311433
Reference: [8] Brezis, H.: Analyse fonctionnelle. Théorie et applications.Collection Mathématiques Appliquées pour la Maî trise, Masson, Paris French (1983). Zbl 0511.46001, MR 0697382
Reference: [9] Gayathri, B., Murugesu, R., Rajasingh, J.: Existence of solutions of some impulsive fractional integrodifferential equations.Int. J. Math. Anal., Ruse 6 (2012), 825-836. Zbl 1252.45004, MR 2905181
Reference: [10] Halanay, A., Wexler, D.: Qualitative Theory of Impulse Systems.Russian Mir, Moskva (1971). Zbl 0226.34001
Reference: [11] Haloi, R., Kumar, P., Pandey, D. N.: Sufficient conditions for the existence and uniqueness of solutions to impulsive fractional integro-differential equations with deviating arguments.J. Fract. Calc. Appl. 5 (2014), 73-84. MR 3234097
Reference: [12] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations.Ill. J. Math. 3 (1959), 352-373. Zbl 0088.31101, MR 0105600, 10.1215/ijm/1255455257
Reference: [13] Idczak, D.: Distributional derivatives of functions of two variables of finite variation and their application to an impulsive hyperbolic equation.Czech. Math. J. 48 (1998), 145-171. Zbl 0930.26006, MR 1614025, 10.1023/A:1022427914423
Reference: [14] Idczak, D., Kamocki, R.: On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in $\Bbb R^n$.Fract. Calc. Appl. Anal. 14 (2011), 538-553. Zbl 1273.34010, MR 2846375, 10.2478/s13540-011-0033-5
Reference: [15] Idczak, D., Walczak, S.: Fractional Sobolev spaces via Riemann-Liouville derivatives.J. Funct. Spaces Appl. 2013 (2013), Article ID 128043, 15 pages. Zbl 1298.46033, MR 3144452, 10.1155/2013/128043
Reference: [16] Kurzweil, J.: Generalized ordinary differential equations.Czech. Math. J. 8 (1958), 360-388. Zbl 0094.05804, MR 0111878
Reference: [17] Kurzweil, J.: On generalized ordinary differential equations possessing discontinuous solutions.PMM, J. Appl. Math. Mech. 22 37-60 (1958), translation from Prikl. Mat. Mekh. 22 27-45 1958. Zbl 0102.07003, MR 0111876, 10.1016/0021-8928(58)90082-0
Reference: [18] Kurzweil, J.: Linear differential equations with distributions as coefficients.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 7 (1959), 557-560. Zbl 0117.34401, MR 0111887
Reference: [19] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6, World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551, 10.1142/0906
Reference: [20] ojasiewicz, S. Ł: An Introduction to the Theory of Real Functions.A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1988). Zbl 0653.26001, MR 0952856
Reference: [21] Rodríguez-López, R., Tersian, S.: Multiple solutions to boundary value problem for impulsive fractional differential equations.Fract. Calc. Appl. Anal. 17 (2014), 1016-1038. Zbl 1312.34024, MR 3254678, 10.2478/s13540-014-0212-2
Reference: [22] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [23] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science, Series A. 14, World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787
Reference: [24] Schwartz, L.: Méthodes mathématiques pour les sciences physiques.Enseignement des Sciences, Hermann, Paris French (1961). Zbl 0101.41301, MR 0143360
Reference: [25] Stallard, F. W.: Functions of bounded variation as solutions of differential systems.Proc. Am. Math. Soc. 13 (1962), 366-373. Zbl 0108.08203, MR 0138835, 10.2307/2034939
Reference: [26] Wang, J., ckan, M. Fe\u, Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations.Dyn. Partial Differ. Equ. 8 (2011), 345-361. Zbl 1264.34014, MR 2901608, 10.4310/DPDE.2011.v8.n4.a3
Reference: [27] Wyderka, Z.: Linear differential equations with measures as coefficients and the control theory.Čas. PěstováníMat. 114 (1989), 13-27. Zbl 0664.34013, MR 0990112
Reference: [28] Wyderka, Z.: Linear Differential Equations with Measures as Coefficients and Control Theory.Prace Naukowe Uniwersytetu Śl\c askiego w Katowicach 1413, Wydawnictwo Uniwersytetu Śl\c askiego, Katowice (1994). Zbl 0813.34058, MR 1292252
.

Files

Files Size Format View
CzechMathJ_67-2017-1_12.pdf 369.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo