Previous |  Up |  Next

Article

Title: A characterization of the Riemann extension in terms of harmonicity (English)
Author: Bejan, Cornelia-Livia
Author: Eken, Şemsi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 197-206
Summary lang: English
.
Category: math
.
Summary: If $(M,\nabla )$ is a manifold with a symmetric linear connection, then $T^{*}M$ can be endowed with the natural Riemann extension $\bar {g}$ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to $\bar {g}$ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure $\mathcal {P}$ on $(T^{*}M,\bar {g})$ and prove that $\mathcal {P}$ is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if $\bar {g}$ reduces to the classical Riemann extension introduced by E. M. Patterson and A. G. Walker (1952). (English)
Keyword: semi-Riemannian manifold
Keyword: cotangent bundle
Keyword: natural Riemann extension
Keyword: harmonic tensor field
MSC: 53B05
MSC: 53C07
MSC: 53C43
MSC: 53C50
MSC: 58E20
idZBL: Zbl 06738512
idMR: MR3633006
DOI: 10.21136/CMJ.2017.0459-15
.
Date available: 2017-03-13T12:09:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146048
.
Reference: [1] Bejan, C.-L.: A classification of the almost para-Hermitian manifolds.Differential Geometry and Its Applications N. Bokan et al. Proc. of the Conf. Dubrovnik, 1988, Univ. Novi Sad, Inst. of Mathematics, Novi Sad (1989), 23-27. Zbl 0683.53034, MR 1040052
Reference: [2] Bejan, C.-L.: The existence problem of hyperbolic structures on vector bundles.Publ. Inst. Math., Nouv. Sér. 53 (67) (1993), 133-138. Zbl 0796.53029, MR 1319766
Reference: [3] Bejan, C.-L.: Some examples of manifolds with hyperbolic structures.Rend. Mat. Appl. (7) 14 (1994), 557-565. Zbl 0818.53041, MR 1312817
Reference: [4] Bejan, C.-L., Druţă-Romaniuc, S.-L.: Harmonic almost complex structures with respect to general natural metrics.Mediterr. J. Math. 11 (2014), 123-136. Zbl 1317.53041, MR 3160617, 10.1007/s00009-013-0302-0
Reference: [5] Bejan, C.-L., Kowalski, O.: On some differential operators on natural Riemann extensions.Ann. Global Anal. Geom. 48 (2015), 171-180. Zbl 06477614, MR 3376878, 10.1007/s10455-015-9463-3
Reference: [6] Calviño-Louzao, E., García-Río, E., Gilkey, P., Vázquez-Lorenzo, R.: The geometry of modified Riemannian extensions.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 2023-2040. Zbl 1186.53056, MR 2515628, 10.1098/rspa.2009.0046
Reference: [7] Cruceanu, V., Fortuny, P., Gadea, P. M.: A survey on paracomplex geometry.Rocky Mt. J. Math. 26 (1996), 83-115. Zbl 0856.53049, MR 1386154, 10.1216/rmjm/1181072105
Reference: [8] García-Río, E., Vanhecke, L., Vázquez-Abal, M. E.: Harmonic endomorphism fields.Illinois J. Math. 41 (1997), 23-30. Zbl 0880.53032, MR 1433184, 10.1215/ijm/1255985842
Reference: [9] Gezer, A., Bilen, L., Çakmak, A.: Properties of modified Riemann extension.Zh. Mat. Fiz. Anal. Geom. 11 (2015), 159-173. Zbl 1329.53046, MR 3442843, 10.15407/mag11.02.159
Reference: [10] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer, Berlin (1993). Zbl 0782.53013, MR 1202431, 10.1007/978-3-662-02950-3
Reference: [11] Kowalski, O., Sekizawa, M.: On natural Riemann extensions.Publ. Math. Debrecen 78 (2011), 709-721. Zbl 1240.53051, MR 2867212, 10.5486/PMD.2011.4992
Reference: [12] Kowalski, O., Sekizawa, M.: Almost Osserman structures on natural Riemann extensions.Differ. Geom. Appl. 31 (2013), 140-149. Zbl 1277.53016, MR 3010084, 10.1016/difgeo.2012.10.007
Reference: [13] Patterson, E. M., Walker, A. G.: Riemann extensions.Q. J. Math., Oxf. Ser. (2) 3 (1952), 19-28. Zbl 0048.15603, MR 0048131, 10.1093/qmath/3.1.19
Reference: [14] Salimov, A., Gezer, A., Aslancı, S.: On almost complex structures in the cotangent bundle.Turk. J. Math. 35 (2011), 487-492. Zbl 1232.53030, MR 2867333, 10.3906/mat-0901-31
Reference: [15] Sekizawa, M.: On complete lifts of reductive homogeneous spaces and generalized symmetric spaces.Czech. Math. J. 36 (111) (1986), 516-534. Zbl 0615.53042, MR 0863184
Reference: [16] Sekizawa, M.: Natural transformations of affine connections on manifolds to metrics on cotangent bundles.Proc. 14th Winter School Srn' ı, Czech, 1986, Suppl. Rend. Circ. Mat. Palermo, Ser. (2) {\it 14} (1987), 129-142. Zbl 0635.53012, MR 0920851
Reference: [17] Willmore, T. J.: An Introduction to Differential Geometry.Clarendon Press, Oxford (1959). Zbl 0086.14401, MR 0159265
Reference: [18] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Differential Geometry.Pure and Applied Mathematics 16, Marcel Dekker, New York (1973). Zbl 0262.53024, MR 0350650
Reference: [19] Yano, K., Patterson, E. M.: Vertical and complete lifts from a manifold to its cotangent bundle.J. Math. Soc. Japan 19 (1967), 91-113. Zbl 0149.19002, MR 0206868, 10.2969/jmsj/01910091
.

Files

Files Size Format View
CzechMathJ_67-2017-1_13.pdf 285.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo