Previous |  Up |  Next


Algebraic fibration; spinor; co spinor; vector field; field of connection; invariant differentiation; curvature; torsion
In this article fibrations of associative algebras on smooth manifolds are investigated. Sections of these fibrations are spinor, co spinor and vector fields with respect to a gauge group. Invariant differentiations are constructed and curvature and torsion of invariant differentiations are calculated.
[1] Dubrovin, B. A., Novikov, S. P., Fomenko, A. T.: Modern geometry (Sovremennaya geometriya). Bull. Amer. Math. Soc. (N.S.) 13, 1 (1985), 62–65, (Nauka, Moscow, 1978, in Russian). DOI 10.1090/S0273-0979-1985-15366-2 | MR 0566582
[2] Burlakov, I. M.: Geometric Structures in Bundles of Associative Algebras. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 55, 1 (2016), 31–38. MR 3674596 | Zbl 1367.53011
[3] Konopleva, N. P., Popov, V. N.: Kalibrovochnye polya. Atomizdat, Moscow, 1972, (in Russian).
[4] Lomsadze, Yu. M.: Teoretiko-gruppovoe vvedenie v teoriyu elementarnykh chastits. Vysshaia shkola, Moscow, 1962, (in Russian).
[5] Burlakov, M. P., Evtushik, L. E.: Clifford’s structure and Clifford’s differentiation on Riemann spaces. Bull. Moscow Univ. – Math., Mech. 1, 2 (1994), 67–74, (in Russian).
Partner of
EuDML logo