Previous |  Up |  Next

Article

Title: Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds (English)
Author: De, Krishnendu
Author: De, Uday Chand
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 29-40
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result. (English)
Keyword: Trans-Sasakian manifold
Keyword: $\xi $-projectively flat
Keyword: $\phi $-projectively flat
Keyword: Einstein manifold
MSC: 53C15
MSC: 53C40
idZBL: Zbl 1365.53030
.
Date available: 2017-03-16T12:38:40Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146059
.
Reference: [1] Bagewadi, C. S., Venkatesha, A.: Some curvature tensors on a trans-Sasakian manifold.. Turk. J. Math. 31 (2007), 111–121. Zbl 1138.53028, MR 2335656
Reference: [2] Blair, D. E.: Contact Manifolds in Riemannian Geometry.. Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976. Zbl 0319.53026, MR 0467588
Reference: [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.. Progress in Mathematics 203, Birkhäuser, Boston, 2002 Zbl 1011.53001, MR 1874240
Reference: [4] Blair, D. E., Oubina, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds.. Publ. Mat. 34, 1 (1990), 199–207. Zbl 0721.53035, MR 1059874, 10.5565/PUBLMAT_34190_15
Reference: [5] Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., Zhen, G.: The structure of a class of K-contact manifolds.. Acta Math. Hungar. 82, 4 (1999), 331–340. Zbl 0924.53024, MR 1675621, 10.1023/A:1006696410826
Reference: [6] Chinea, D., Gonzales, C.: A classification of almost contact metric manifolds.. Ann. Mat. Pura Appl. 156, 4 (1990), 15–36. MR 1080209, 10.1007/BF01766972
Reference: [7] Chinea, D., Gonzales, C.: Curvature relations in trans-sasakian manifolds.. In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571. MR 1139218
Reference: [8] De, U. C., De, K.: On a class of three- dimensional Trans-Sasakian manifold.. Commun. Korean Math. Soc. 27 (2012), 795–808. MR 3025885, 10.4134/CKMS.2012.27.4.795
Reference: [9] De, U. C., Sarkar, A.: On three-dimensional trans-Sasakian manifolds.. Extracta Mathematicae 23, 3 (2008), 265–277. Zbl 1175.53058, MR 2524542
Reference: [10] De, U. C., Tripathi, M. M.: Ricci tensor in 3-dimensional trans-Sasakian manifolds.. Kyungpook Math. J. 43, 2 (2003), 247–255. Zbl 1073.53060, MR 1982228
Reference: [11] Gray, A., Hervella, L. M.: The sixteen classes of almost hermitian manifolds and their linear invariants.. Ann. Mat. Pura Appl. 123, 4 (1980), 35–58. Zbl 0444.53032, MR 0581924, 10.1007/BF01796539
Reference: [12] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors.. Kodai Math. J. 4 (1981), 1–27. Zbl 0472.53043, MR 0615665, 10.2996/kmj/1138036310
Reference: [13] Kim, J. S., Prasad, R., Tripathi, M. M.: On generalized ricci- recurrent trans- sasakian manifolds.. J. Korean Math. Soc. 39 (2002), 953–961. Zbl 1025.53023, MR 1932790, 10.4134/JKMS.2002.39.6.953
Reference: [14] Kowalski, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y ).R = 0$.. Czechoslovak Math. J. 46(121) (1996), 427–474. MR 1408298
Reference: [15] Marrero, J. C.: The local structure of trans-sasakian manifolds.. Ann. Mat. Pura Appl. 162, 4 (1992), 77–86. Zbl 0772.53036, MR 1199647, 10.1007/BF01760000
Reference: [16] Marrero, J. C., Chinea, D.: On trans-sasakian manifolds.. In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659. MR 1112951
Reference: [17] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces.. Sov. Math., Dokl. 34 (1987), 428–431. Zbl 0631.53018, MR 0819428
Reference: [18] Mikeš, J.: Differential Geometry of Special Mappings.. Palacky Univ. Press, Olomouc, 2015. Zbl 1337.53001, MR 3442960
Reference: [19] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces.. Ukr. Geom. Sb. 32 (1989), 92–98. Zbl 0711.53042, MR 1049372
Reference: [20] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications.. Chandrama Prakasana, Allahabad, 1984.
Reference: [21] Oubina, J. A.: New classes of almost contact metric structures.. Publ. Math. Debrecen 32, 3-4 (1985), 187–193. Zbl 0611.53032, MR 0834769
Reference: [22] Ozgur, C.: $\phi $-conformally flat Lorentzian Para-Sasakian manifolds.. Radovi Matematicki 12 (2003), 99–106. MR 2022248
Reference: [23] Shukla, S. S., Singh, D. D.: On $\epsilon $-trans-sasakian manifolds.. Int. J. Math. Anal. 49 (2010), 2401–2414. MR 2770033
Reference: [24] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces.. Nauka, Moscow, 1979. Zbl 0637.53020
Reference: [25] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X, Y ).R = 0$.. J. Diff. Geom. 17 (1982), 531–582. Zbl 0508.53025, MR 0683165, 10.4310/jdg/1214437486
Reference: [26] Yano, K., Bochner, S.: Curvature and Betti Numbers.. Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953. Zbl 0051.39402, MR 0062505
Reference: [27] Yano, K., Kon, M.: Structure on Manifolds.. Series in Math. 3, World Scientific, Singapore, 1984. MR 0794310
Reference: [28] Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M.: On $\xi $-conformally flat contact metric manifolds.. Indian J. Pure Appl. Math. 28 (1997), 725–734. Zbl 0882.53031, MR 1461184
.

Files

Files Size Format View
ActaOlom_55-2016-2_4.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo