Previous |  Up |  Next

Article

Title: Some Classes of Lorentzian $\alpha $-Sasakian Manifolds Admitting a Quarter-symmetric Metric Connection (English)
Author: DEY, Santu
Author: Pal, Buddhadev
Author: BHATTACHARYYA, Arindam
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 41-55
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study a quarter-symmetric metric connection in an Lorentzian $\alpha $-Sasakian manifold. We study some curvature properties of an Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection. We study locally $\phi $-symmetric, $\phi $-symmetric, locally projective $\phi $-symmetric, $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold with respect to the quarter-symmetric metric connection. (English)
Keyword: Quarter-symmetric metric connection
Keyword: Lorentzian $\alpha $-Sasakian manifold
Keyword: locally $\phi $-symmetric manifold
Keyword: locally projective $\phi $-symmetric manifold
Keyword: $\xi $-projectively flat Lorentzian $\alpha $-Sasakian manifold
MSC: 53C15
MSC: 53C25
idZBL: Zbl 1365.53045
.
Date available: 2017-03-16T12:39:57Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146060
.
Reference: [1] Bagewadi, C. S., Prakasha, D. G., Venkatesha, A.: A Study of Ricci quarter-symmetric metric connection on a Riemannian manifold.. Indian J. Math. 50, 3 (2008), 607–615. Zbl 1159.53323, MR 2483702
Reference: [2] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces.. Glasgow Math. J. 41 (1999), 409–416. MR 1720426, 10.1017/S0017089599000579
Reference: [3] Formella, S., Mikeš, J.: Geodesic mappings of Einstein spaces.. Ann. Sci. Stetinenses 9 (1994), 31–40.
Reference: [4] Friedmann, A., Schouten, J. A.: Uber die Geometrie der halbsymmetrischen Uber-tragung.. Math. Zeitschr 21 (1924), 211–223. MR 1544701, 10.1007/BF01187468
Reference: [5] Golab, S.: On semi-symmetric and quarter-symmetric linear connectionsTensor, N. S..: Tensor, N. S. 29 (1975), 249–254. MR 0383275
Reference: [6] Hayden, H. A.: Subspaces of a space with torsion.. Proc. London Math. Soc. 34 (1932), 27–50. MR 1576150, 10.1112/plms/s2-34.1.27
Reference: [7] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces.. In: Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2013, 331–335. Zbl 1268.53049, MR 3364052
Reference: [8] Mikeš, J.: Differential Geometry of Special Mappings.. Palacky Univ. Press, Olomouc, 2015. Zbl 1337.53001, MR 3442960
Reference: [9] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.. J. Math. Sci. 78, 3 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [10] Mikeš, J.: Holomorphically projective mappings and their generalizations.. J. Math. Sci. 89, 3 (1998), 1334–1353. MR 1619720, 10.1007/BF02414875
Reference: [11] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.. Palacky Univ. Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [12] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces.. Ukr. Geom. Sb. 32 (1989), 92–98. Zbl 0711.53042, MR 1049372
Reference: [13] Mikeš, J.: Equidistant Kähler spaces.. Math. Notes 38 (1985), 855–858. Zbl 0594.53024, MR 0819428, 10.1007/BF01158415
Reference: [14] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces.. Sov. Math., Dokl. 34 (1987), 428–431. Zbl 0631.53018, MR 0819428
Reference: [15] Mishra, R. S., Pandey, S. N.: On quarter-symmetric metric F-connection.. Tensor, N. S. 34 (1980), 1–7. MR 0570556
Reference: [16] Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S.: On pseudosymmetric Lorentzian $\alpha $-Sasakian manifolds.. IJPAM 48, 1 (2008), 57–65. MR 2456434
Reference: [17] Rastogi, S. C.: On quarter-symmetric connection.. C. R. Acad. Sci. Bulgar 31 (1978), 811–814. MR 0522544
Reference: [18] Rastogi, S. C.: On quarter-symmetric metric connection.. Tensor 44 (1987), 133–141. MR 0944894
Reference: [19] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.. Nauka, Moscow, 1979. Zbl 0637.53020
Reference: [20] Takahashi, T.: Sasakian $\phi $-symmetric spaces.. Tohoku Math. J. 29 (1977), 91–113. MR 0440472, 10.2748/tmj/1178240699
Reference: [21] Tripathi, M. M., Dwivedi, M. K.: The structure of some classes of K-contact manifolds.. Proc. Indian Acad. Sci. Math. Sci. 118 (2008), 371–379. Zbl 1155.53020, MR 2450241, 10.1007/s12044-008-0029-1
Reference: [22] Yano, K.: On semi-symmetric metric connections.. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. MR 0275321
Reference: [23] Yano, K., Imai, T.: Quarter-symmetric metric connections and their curvature tensors.. Tensor, N. S. 38 (1982), 13–18. Zbl 0504.53014, MR 0832619
Reference: [24] Yildiz, A., Murathan, C.: On Lorentzian $\alpha $-Sasakian manifolds.. Kyungpook Math. J. 45 (2005), 95–103. Zbl 1085.53023, MR 2142281
Reference: [25] Yadav, S., Suthar, D. L.: Certain derivation on Lorentzian $\alpha $-Sasakian manifolds.. Mathematics and Decision Science 12, 2 (2012), 1–6. MR 2814463
Reference: [26] Yildiz, A., Turan, M., Acet, B. F.: On three dimensional Lorentzian $\alpha $-Sasakian manifolds.. Bulletin of Mathematical Analysis and Applications 1, 3 (2009), 90–98. Zbl 1312.53071, MR 2578119
.

Files

Files Size Format View
ActaOlom_55-2016-2_5.pdf 325.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo