Title:
|
$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds (English) |
Author:
|
Hui, Shyamal Kumar |
Author:
|
Chakraborty, Debabrata |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
101-109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field. (English) |
Keyword:
|
$\eta $-Ricci soliton |
Keyword:
|
$\eta $-Einstein manifold |
Keyword:
|
$(LCS)_n$-manifold |
MSC:
|
53B30 |
MSC:
|
53C15 |
MSC:
|
53C25 |
idZBL:
|
Zbl 1365.53022 |
. |
Date available:
|
2017-03-16T12:47:49Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146064 |
. |
Reference:
|
[1] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: Certain results on Ricci solitons in $\alpha $-Sasakian manifolds.. Geometry 2013, ID 573925 (2013), 1–4. Zbl 1314.53116, MR 3100666 |
Reference:
|
[2] Ashoka, S. R., Bagewadi, C. S., Ingalahalli, G.: A geometry on Ricci solitons in $(LCS)_{n}$-manifolds.. Diff. Geom.-Dynamical Systems 16 (2014), 50–62. Zbl 1331.53045, MR 3226604 |
Reference:
|
[3] Atceken, M.: On geometry of submanifolds of $(LCS)_n$-manifolds.. International Journal of Mathematics and Mathematical Sciences 2012, ID 304647 (2014), 1–11. MR 2888754 |
Reference:
|
[4] Atceken, M., Hui, S. K.: Slant and pseudo-slant submanifolds of LCS-manifolds.. Czechoslovak Math. J. 63 (2013), 177–190. MR 3035505, 10.1007/s10587-013-0012-6 |
Reference:
|
[5] Bagewadi, C. S., Ingalahalli, G.: Ricci solitons in Lorentzian-Sasakian manifolds.. Acta Math. Acad. Paeda. Nyire. 28 (2012), 59–68. MR 2942704 |
Reference:
|
[6] Bejan, C. L., Crasmareanu, M.: Ricci solitons in manifolds with quasi constant curvature.. Publ. Math. Debrecen 78 (2011), 235–243. Zbl 1274.53097, MR 2777674, 10.5486/PMD.2011.4797 |
Reference:
|
[7] Blaga, A. M.: $\eta $-Ricci solitons on para-kenmotsu manifolds.. Balkan J. Geom. Appl. 20 (2015), 1–13. Zbl 1334.53017, MR 3367062 |
Reference:
|
[8] Blaga, A. M., Crasmareanu, M.: Torse forming $\eta $-Ricci solitons in almost para-contact $\eta $-Einstein geometry.. Filomat, (to appear). |
Reference:
|
[9] Chandra, S., Hui, S. K., Shaikh, A. A.: Second order parallel tensors and Ricci solitons on $(LCS)_n$-manifolds.. Commun. Korean Math. Soc. 30 (2015), 123–130. Zbl 1338.53055, MR 3346486, 10.4134/CKMS.2015.30.2.123 |
Reference:
|
[10] Chen, B. Y., Deshmukh, S.: Geometry of compact shrinking Ricci solitons.. Balkan J. Geom. Appl. 19 (2014), 13–21. Zbl 1316.53052, MR 3223305 |
Reference:
|
[11] Chen, B. Y., Deshmukh, S.: Ricci solitons and concurrent vector fields.. arXiv:1407.2790 [math.DG] 2014 (2014), 1–12. MR 3367063 |
Reference:
|
[12] Cho, J. T., Kimura, M.: Ricci solitons and real hypersurfaces in a complex space form.. Tohoku Math. J. 61 (2009), 205–212. Zbl 1172.53021, MR 2541405, 10.2748/tmj/1245849443 |
Reference:
|
[13] Deshmukh, S., Al-Sodais, H., Alodan, H.: A note on Ricci solitons.. Balkan J. Geom. Appl. 16 (2011), 48–55. Zbl 1220.53060, MR 2785715 |
Reference:
|
[14] Hamilton, R. S.: Three Manifold with positive Ricci curvature.. J. Differential Geom. 17, 2 (1982), 255–306. MR 0664497, 10.4310/jdg/1214436922 |
Reference:
|
[15] Hamilton, R. S.: The Ricci flow on surfaces.. Contemporary Mathematics 71 (1988), 237–261. Zbl 0663.53031, MR 0954419, 10.1090/conm/071/954419 |
Reference:
|
[16] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vektor fields in Riemannian spaces.. Arch. Math. 5 (2008), 385–390. MR 2501574 |
Reference:
|
[17] Hinterleitner, I., Kiosak, V.: $\varphi (Ric)$-vector fields on conformally flat spaces.. AIP Conf. Proc. 1191 (2009), 98–103. |
Reference:
|
[18] Hui, S. K.: On $\phi $-pseudo symmetries of $(LCS)_n$-manifolds.. Kyungpook Math. J. 53 (2013), 285–294. MR 3078089, 10.5666/KMJ.2013.53.2.285 |
Reference:
|
[19] Hui, S. K., Atceken, M.: Contact warped product semi-slant submanifolds of $(LCS)_n$-manifolds.. Acta Univ. Sapientiae Mathematica 3, 2 (2011), 212–224. Zbl 1260.53081, MR 2915836 |
Reference:
|
[20] Hui, S. K., Chakraborty, D.: Some types of Ricci solitons on $(LCS)_n$-manifolds.. J. Math. Sciences: Advances and Applications 37 (2016), 1–17. |
Reference:
|
[21] Hui, S. K., Lemence, R. S., Chakraborty, D.: Ricci solitons on three dimensional generalized Sasakian-space-forms.. Tensor, N. S. 76 (2015). |
Reference:
|
[22] Ingalahalli, G., Bagewadi, C. S.: Ricci solitons in $\alpha $-Sasakian manifolds.. ISRN Geometry 2012, ID 421384 (2012), 1–13. Zbl 1247.53052, MR 3100666, 10.5402/2012/421384 |
Reference:
|
[23] Matsumoto, K.: On Lorentzian almost paracontact manifolds.. Bull. Yamagata Univ. Nat. Sci. 12 (1989), 151–156. MR 0994289 |
Reference:
|
[24] Mihai, I., Rosca, R.: On Lorentzian para-Sasakian manifolds.. In: Classical Anal., World Sci. Publ., Singapore, 1992, 155–169. MR 1173650 |
Reference:
|
[25] Mikeš, J., Rachůnek, L.: Torse forming vector fields in T-semisymmetric Riemannian spaces.. In: Steps in Diff. Geom., Proc. of the Colloquium on Diff. Geom., Univ. Debrecen, Debrecen, Hungary, 2000, 219–229. MR 1859300 |
Reference:
|
[26] Mikeš, J.: Differential Geometry of Special Mappings.. Palacky Univ. Press, Olomouc, 2015. Zbl 1337.53001, MR 3442960 |
Reference:
|
[27] Nagaraja, H. G., Premlatta, C. R.: Ricci solitons in Kenmotsu manifolds.. J. Math. Analysis 3 (2012), 18–24. MR 2966274 |
Reference:
|
[28] Narain, D., Yadav, S.: On weak concircular symmetries of $(LCS)_{2n+1}$-manifolds.. Global J. Sci. Frontier Research 12 (2012), 85–94. MR 2850604 |
Reference:
|
[29] O’Neill, B.: Semi Riemannian geometry with applications to relativity.. Academic Press, New York, 1983. Zbl 0531.53051, MR 0719023 |
Reference:
|
[30] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.. arXiv:math/0211159 [Math.DG] 2002 (2002), 1–39. Zbl 1130.53001 |
Reference:
|
[31] Perelman, G.: Ricci flow with surgery on three manifolds.. arXiv:math/0303109 [Math.DG] 2003 (2013), 1–22. |
Reference:
|
[32] Prakasha, D. G.: On Ricci $\eta $-recurrent $(LCS)_n$-manifolds.. Acta Univ. Apulensis 24 (2010), 109–118. Zbl 1224.53061, MR 2663680 |
Reference:
|
[33] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type.. Kyungpook Math. J. 43 (2003), 305–314. Zbl 1054.53056, MR 1983436 |
Reference:
|
[34] Shaikh, A. A.: Some results on $(LCS)_n$-manifolds.. J. Korean Math. Soc. 46 (2009), 449–461. Zbl 1193.53094, MR 2515129, 10.4134/JKMS.2009.46.3.449 |
Reference:
|
[35] Shaikh, A. A., Ahmad, H.: Some transformations on $(LCS)_n$-manifolds.. Tsukuba J. Math. 38 (2014), 1–24. Zbl 1296.53056, MR 3261910, 10.21099/tkbjm/1407938669 |
Reference:
|
[36] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes.. J. Math. Stat. 1 (2005), 129–132. Zbl 1142.53326, MR 2197611, 10.3844/jmssp.2005.129.132 |
Reference:
|
[37] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes II.. American J. Appl. Sci. 3, 4 (2006), 1790–1794. MR 2220732, 10.3844/ajassp.2006.1790.1794 |
Reference:
|
[38] Shaikh, A. A., Basu, T., Eyasmin, S.: On locally $\phi $-symmetric $(LCS)_n$-manifolds.. Int. J. Pure Appl. Math. 41, 8 (2007), 1161–1170. Zbl 1136.53030, MR 2384602 |
Reference:
|
[39] Shaikh, A. A., Basu, T., Eyasmin, S.: On the existence of $\phi $-recurrent $(LCS)_n$-manifolds.. Extracta Mathematicae 23, 1 (2008), 71–83. MR 2449997 |
Reference:
|
[40] Shaikh, A. A., Binh, T. Q.: On weakly symmetric $(LCS)_n$-manifolds.. J. Adv. Math. Studies 2 (2009), 75–90. Zbl 1180.53033, MR 2583641 |
Reference:
|
[41] Shaikh, A. A., Hui, S. K.: On generalized $\phi $-recurrent $(LCS)_n$-manifolds.. AIP Conf. Proc. 1309 (2010), 419–429. |
Reference:
|
[42] Shaikh, A. A., Matsuyama, Y., Hui, S. K.: On invariant submanifold of $(LCS)_n$-manifolds.. J. Egyptian Math. Soc. 24 (2016), 263–269. MR 3488908, 10.1016/j.joems.2015.05.008 |
Reference:
|
[43] Sharma, R.: Second order parallel tensor in real and complex space forms.. International J. Math. and Math. Sci. 12 (1989), 787–790. Zbl 0696.53012, MR 1024982 |
Reference:
|
[44] Sharma, R.: Certain results on k-contact and $(k,\mu )$-contact manifolds.. J. of Geom. 89 (2008), 138–147. Zbl 1175.53060, MR 2457028, 10.1007/s00022-008-2004-5 |
Reference:
|
[45] Tripathi, M. M.: Ricci solitons in contact metric manifolds.. arxiv:0801.4221 [Math.DG] 2008 (2008), 1–9. |
Reference:
|
[46] Yano, K.: Concircular geometry I, concircular transformations.. Proc. Imp. Acad. Tokyo 16 (1940), 195–200. MR 0003113, 10.3792/pia/1195579139 |
. |