Previous |  Up |  Next

Article

Title: On a Semi-symmetric Metric Connection in an Almost Kenmotsu Manifold with Nullity Distributions (English)
Author: Ghosh, Gopal
Author: De, Uday Chand
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 87-99
Summary lang: English
.
Category: math
.
Summary: We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field $\xi $ belonging to the $(k,\mu )^{\prime }$-nullity distribution and $(k,\mu )$-nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$- and $(k,\mu )$-nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with $\xi $ belonging to $(k,\mu )^{\prime }$-nullity distribution admitting a semisymmetric metric connection. (English)
Keyword: Semisymmetric metric connection
Keyword: almost Kenmotsu manifold
Keyword: Einstein manifold
Keyword: sectional curvature
Keyword: Ricci tensor
Keyword: Weyl conformal curvature tensor
MSC: 53C25
MSC: 53C35
idZBL: Zbl 1372.53048
.
Date available: 2017-03-16T12:45:08Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146063
.
Reference: [1] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nulitty condition.. Israel. J. Math. 91 (1995), 189–214. MR 1348312, 10.1007/BF02761646
Reference: [2] Blair, D. E.: Contact Manifolds in Reimannian Geometry.. Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.
Reference: [3] Blair, D. E.: Reimannian Geometry of Contact and Sympletic Manifolds.. Progress in Mathematics 203, Birkhäuser, Basel, 2010. MR 2682326
Reference: [4] Binh, T. Q.: On Semisymmetric Connections.. Periodica Mathematica Hungarica 21 (1990), 101–107. MR 1070949, 10.1007/BF01946849
Reference: [5] Barman, A.: Concirculer curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold.. Thai Jornal Of Mathematics 13 (2015), 245–257. MR 3346960
Reference: [6] Barman, A.: On a special type of Remannian manifold admitting a type of semisymmetric metric connection.. Novi Sad J. Math 42 (2012), 81–88. MR 3099738
Reference: [7] Barman, A.: On Para-Sasakian manifolds admitting semisymmetric metric connection.. Publication de L’Insitut Mathematique 109 (2014), 239–247. MR 3221231, 10.2298/PIM1409239B
Reference: [8] De, U. C., Pathok, G.: On a Semi-symmetric Metric Connection in a Kenmotsu manifold.. Bull. Cal. Math. Soc. 94 (2002), 319–324. MR 1947587
Reference: [9] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions.. J. Geom. 93 (2009), 46–61. Zbl 1204.53025, MR 2501208, 10.1007/s00022-009-1974-2
Reference: [10] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds with a condition of $\eta $-parallelsim.. Differential Geom. Appl. 27 (2009), 671–679. MR 2567845, 10.1016/j.difgeo.2009.03.007
Reference: [11] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetri.. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343–354. MR 2341570
Reference: [12] Friedman, A., Schouten, J. A.: Über die Geometric der halbsymmetrischen Übertragung.. Math., Zeitschr. 21 (1924), 211–223. MR 1544701, 10.1007/BF01187468
Reference: [13] Gray, A.: Spaces of constancy of curvature operators.. Proc. Amer. Math. Soc. 17 (1966), 897–902. Zbl 0145.18603, MR 0198392, 10.1090/S0002-9939-1966-0198392-4
Reference: [14] Hayden, H. A.: Subspace of space with torsion.. Proc. London Math. Soc. 34 (1932), 27–50. MR 1576150, 10.1112/plms/s2-34.1.27
Reference: [15] Imai, T.: Notes on semi-symmetric metric conection.. Tensor (N.S.) 24 (1972), 293–296. MR 0375121
Reference: [16] Kenmotsu, K.: A class of almost contact Riemannian manifolds.. Tohoku Mathematical Journal 24, 1 (1972), 93–103. Zbl 0245.53040, MR 0319102, 10.2748/tmj/1178241594
Reference: [17] Liang, Y.: On semi-symmetric recurrent-metric connection.. Tensor (N.S.) 55 (1994), 107–112. Zbl 0817.53024, MR 1310103
Reference: [18] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications.. Chandrama Prakasana, Allahabad, 1984.
Reference: [19] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on an almost Kenmotsu manifolds.. J. Geom. 4 (2011), 168–183. MR 2929587
Reference: [20] Pastore, A. M., Saltarelli, V.: Almost Kenmotsu manifolds with conformal Reeb foliation.. Bull. Belg. Math. Soc. Simon Stevin 21 (2012), 343–354. MR 2907610
Reference: [21] Pravanović, M., Pušić, N.: On manifolds admitting some semi-symmetric metric connection.. Indian J. Math. 37 (1995), 37–67. MR 1366983
Reference: [22] Pušić, N.: On geodesic lines of metric semi-symmetric connection on Riemannian and hyperbolic Kählerian spaces.. Novi Sad J. Math. 29 (1999), 291–299. MR 1771006
Reference: [23] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R=0$. I. The local version.. J. Differential Geom. 17, 4 (1982), 531–582. Zbl 0508.53025, MR 0683165, 10.4310/jdg/1214437486
Reference: [24] Tanno, S.: Some differential equation on Reimannian manifolds.. J. Math. Soc. Japan 30 (1978), 509–531. MR 0500721, 10.2969/jmsj/03030509
Reference: [25] Velimirović, L. S., Minčić, S. M., Stanković, M. S.: Infinitesimal deformations of curvature tensor at non-symmetric affine connection space.. Mat. Vesnic 54 (2002), 219–226. MR 1996621
Reference: [26] Velimirović, L. S., Minčić, S. M., Stanković, M. S.: Infinitesimal deformations and Lie derivative of non-symmetric affine connection space.. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. MR 2056026
Reference: [27] Wang, Y., Liu, X.: On $\phi $-recurrent almost kenmotsu manifolds.. Kuwait J. Sci. 42 (2015), 65–77. Zbl 1358.53040, MR 3331380
Reference: [28] Wang, Y., Liu, X.: Second order parrallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions.. Filomat 28 (2014), 839–847. MR 3360077, 10.2298/FIL1404839W
Reference: [29] Wang, Y., Liu, X.: Remannian semisymmetric almost Kenmotsu manifolds and nullity distributions.. Ann. Polon. Math. 112 (2014), 37–46. MR 3244913, 10.4064/ap112-1-3
Reference: [30] Yano, K.: On semisymmetric metric connection.. Rev. Roumaine Math. Pures Appl. 15 (1970), 1570–1586. MR 0275321
Reference: [31] Yano, K., Kon, M.: Structure on Manifolds.. Series in Math. 3, World Scientific, Singapore, 1984. MR 0794310
Reference: [32] Zhao, P., Song, H.: An invariant of the projective semisymmetric connection.. Chinese Quaterly J. Math. 19 (1994), 48–52.
.

Files

Files Size Format View
ActaOlom_55-2016-2_8.pdf 327.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo