Previous |  Up |  Next

Article

Title: Yetter-Drinfeld-Long bimodules are modules (English)
Author: Lu, Daowei
Author: Wang, Shuanhong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 379-387
Summary lang: English
.
Category: math
.
Summary: Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal {LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal {YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results. (English)
Keyword: Hopf algebra
Keyword: Yetter-Drinfeld-Long bimodule
Keyword: braided monoidal category
MSC: 16T05
MSC: 18D10
idZBL: Zbl 06738525
idMR: MR3661047
DOI: 10.21136/CMJ.2017.0666-15
.
Date available: 2017-06-01T14:27:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146762
.
Reference: [1] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155, Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [2] Panaite, F., Staic, M. D.: More examples of pseudosymmetric braided categories.J. Algebra Appl. 12 (2013), Paper No. 1250186, 21 pages. Zbl 1275.18018, MR 3037261, 10.1142/S0219498812501861
Reference: [3] Panaite, F., Staic, M. D., Oystaeyen, F. Van: Pseudosymmetric braidings, twines and twisted algebras.J. Pure Appl. Algebra 214 (2010), 867-884. Zbl 1207.16037, MR 2580665, 10.1016/j.jpaa.2009.08.008
Reference: [4] Panaite, F., Oystaeyen, F. Van: L-R-smash product for (quasi-)Hopf algebras.J. Algebra 309 (2007), 168-191. Zbl 1126.16016, MR 2301236, 10.1016/j.jalgebra.2006.07.020
Reference: [5] Panaite, F., Oystaeyen, F. Van: L-R-smash biproducts, double biproducts and a braided category of Yetter-Drinfeld-Long bimodules.Rocky Mt. J. Math. 40 (2010), 2013-2024. Zbl 1206.16021, MR 2764235, 10.1216/RMJ-2010-40-6-2013
Reference: [6] Radford, D. E.: The structure of Hopf algebras with a projection.J. Algebra 92 (1985), 322-347. Zbl 0549.16003, MR 0778452, 10.1016/0021-8693(85)90124-3
Reference: [7] Zhang, L.: L-R smash products for bimodule algebras.Prog. Nat. Sci. 16 (2006), 580-587. Zbl 1124.16036, MR 2247240, 10.1080/10020070612330038
.

Files

Files Size Format View
CzechMathJ_67-2017-2_7.pdf 224.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo