Previous |  Up |  Next

Article

Title: Skew inverse power series rings over a ring with projective socle (English)
Author: Paykan, Kamal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 389-395
Summary lang: English
.
Category: math
.
Summary: A ring $R$ is called a right $\rm PS$-ring if its socle, ${\rm Soc}(R_{R} )$, is projective. Nicholson and Watters have shown that if $R$ is a right $\rm PS$-ring, then so are the polynomial ring $R[x]$ and power series ring $R[[x]]$. In this paper, it is proved that, under suitable conditions, if $R$ has a (flat) projective socle, then so does the skew inverse power series ring $R[[x^{-1};\alpha , \delta ]]$ and the skew polynomial ring $R[x;\alpha , \delta ]$, where $R$ is an associative ring equipped with an automorphism $\alpha $ and an $\alpha $-derivation $\delta $. Our results extend and unify many existing results. Examples to illustrate and delimit the theory are provided. (English)
Keyword: skew inverse power series ring
Keyword: skew polynomial ring
Keyword: annihilator
Keyword: projective socle ring
Keyword: flat socle ring
MSC: 16P40
MSC: 16S36
MSC: 16W60
MSC: 16W70
idZBL: Zbl 06738526
idMR: MR3661048
DOI: 10.21136/CMJ.2017.0672-15
.
Date available: 2017-06-01T14:27:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146763
.
Reference: [1] Armendariz, E. P.: A note on extensions of Baer and p.p.-rings.J. Aust. Math. Soc. 18 (1974), 470-473. Zbl 0292.16009, MR 0366979, 10.1017/S1446788700029190
Reference: [2] Goodearl, K. R.: Centralizers in differential, pseudo-differential, and fractional differential operator rings.Rocky Mt. J. Math. 13 (1983), 573-618. Zbl 0532.16002, MR 0724420, 10.1216/RMJ-1983-13-4-573
Reference: [3] Gordon, R.: Rings in which minimal left ideals are projective.Pac. J. Math. 31 (1969), 679-692. Zbl 0188.08402, MR 0265404, 10.2140/pjm.1969.31.679
Reference: [4] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings.Acta Math. Hung. 107 (2005), 207-224. Zbl 1081.16032, MR 2148584, 10.1007/s10474-005-0191-1
Reference: [5] Kaplansky, I.: Rings of Operators.Mathematics Lecture Note Series, W. A. Benjamin, New York (1968). Zbl 0174.18503, MR 0244778
Reference: [6] Kim, C. O., Kim, H. K., Jang, S. H.: A study on quasi-duo rings.Bull. Korean Math. Soc. 36 (1999), 579-588. Zbl 0938.16002, MR 1722187
Reference: [7] Krempa, J.: Some examples of reduced rings.Algebra Colloq. 3 (1996), 289-300. Zbl 0859.16019, MR 1422968
Reference: [8] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent.J. Pure Appl. Algebra 195 (2005), 243-259. Zbl 1071.16003, MR 2114274, 10.1016/j.jpaa.2004.08.011
Reference: [9] Leroy, A., Matczuk, J., Puczyłowski, E. R.: Quasi-duo skew polynomial rings.J. Pure Appl. Algebra 212 (2008), 1951-1959. Zbl 1143.16024, MR 2414695, 10.1016/j.jpaa.2008.01.002
Reference: [10] Letzter, E. S., Wang, L.: Noetherian skew inverse power series rings.Algebr. Represent. Theory 13 (2010), 303-314. Zbl 1217.16038, MR 2630122, 10.1007/s10468-008-9123-4
Reference: [11] Liu, Z. K.: Rings with flat left socle.Commun. Algebra 23 (1995), 1645-1656. Zbl 0826.16002, MR 1323692, 10.1080/00927879508825301
Reference: [12] Liu, Z., Li, F.: PS-rings of generalized power series.Commun. Algebra 26 (1998), 2283-2291. Zbl 0905.16021, MR 1626626, 10.1080/00927879808826276
Reference: [13] Nicholson, W. K., Watters, J. F.: Rings with projective socle.Proc. Am. Math. Soc. 102 (1988), 443-450. Zbl 0657.16015, MR 0928957, 10.2307/2047200
Reference: [14] Paykan, K., Moussavi, A.: Special properties of differential inverse power series rings.J. Algebra Appl. 15 (2016), Article ID 1650181, 23 pages. Zbl 06667896, MR 3575971, 10.1142/S0219498816501814
Reference: [15] Paykan, K., Moussavi, A.: Study of skew inverse Laurent series rings.J. Algebra Appl. 16 (2017), Article ID 1750221, 33 pages. MR 3725081, 10.1142/s0219498817502218
Reference: [16] Salem, R. M., Farahat, M. A., Abd-Elmalk, H.: PS-modules over Ore extensions and skew generalized power series rings.Int. J. Math. Math. Sci. (2015), Article ID 879129, 6 pages. MR 3332121, 10.1155/2015/879129
Reference: [17] Tuganbaev, D. A.: Laurent series rings and pseudo-differential operator rings.J. Math. Sci., New York 128 (2005), 2843-2893. Zbl 1122.16033, MR 2171557, 10.1007/s10958-005-0244-6
Reference: [18] Xiao, Y.: Rings with flat socles.Proc. Am. Math. Soc. 123 (1995), 2391-2395. Zbl 0835.16002, MR 1254860, 10.2307/2161264
Reference: [19] Xue, W.: Modules with projective socles.Riv. Mat. Univ. Parma, V. Ser. 1 (1992), 311-315. Zbl 0806.16004, MR 1230620
Reference: [20] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342
.

Files

Files Size Format View
CzechMathJ_67-2017-2_8.pdf 237.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo