Previous |  Up |  Next

Article

Title: $\mathcal C^k$-regularity for the $\bar \partial $-equation with a support condition (English)
Author: Khidr, Shaban
Author: Abdelkader, Osama
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 515-523
Summary lang: English
.
Category: math
.
Summary: Let $D$ be a $\mathcal {C}^d$ $q$-convex intersection, $d\geq 2$, $0\le q\le n-1$, in a complex manifold $X$ of complex dimension $n$, $n\ge 2$, and let $E$ be a holomorphic vector bundle of rank $N$ over $X$. In this paper, $\mathcal C^k$-estimates, $k=2, 3, \dots , \infty $, for solutions to the \hbox {$\bar \partial $-equation} with small loss of smoothness are obtained for $E$-valued $(0, s)$-forms on $D$ when $ n-q\le s\le n$. In addition, we solve the $\bar \partial $-equation with a support condition in $\mathcal C^k$-spaces. More precisely, we prove that for a $\bar \partial $-closed form $f$ in $\mathcal C_{0,q}^{k}(X\setminus D, E)$, $1\le q\le n-2$, $n\ge 3$, with compact support and for $\varepsilon $ with $0<\varepsilon <1$ there exists a form $u$ in $\mathcal C_{0,q-1}^{k-\varepsilon }(X\setminus D, E)$ with compact support such that $\bar {\partial }u=f$ in $X\setminus \overline D$. Applications are given for a separation theorem of Andreotti-Vesentini type in $\mathcal C^k$-setting and for the solvability of the $\bar \partial $-equation for currents. (English)
Keyword: $\bar \partial $-equation
Keyword: $q$-convexity
Keyword: $\mathcal C^k$-estimate
MSC: 32F10
MSC: 32W05
idZBL: Zbl 06738534
idMR: MR3661056
DOI: 10.21136/CMJ.2017.0039-16
.
Date available: 2017-06-01T14:31:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146771
.
Reference: [1] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem I: Reduction to vanishing theorems.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 325-363. Zbl 0256.32007, MR 0460725
Reference: [2] Andreotti, A., Hill, C. D.: E. E. Levi convexity and the Hans Lewy problem II: Vanishing theorems.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 26 (1972), 747-806. Zbl 0283.32013, MR 0477150
Reference: [3] Barkatou, M.-Y., Khidr, S.: Global solution with $\mathcal C^k$-estimates for $\overline\partial$-equation on $q$-convex intersections.Math. Nachr. 284 (2011), 2024-2031. Zbl 1227.32016, MR 2844676, 10.1002/mana.200910063
Reference: [4] Brinkschulte, J.: The $\overline\partial$-problem with support conditions on some weakly pseudoconvex domains.Ark. Mat. 42 (2004), 259-282. Zbl 1078.32023, MR 2101387, 10.1007/BF02385479
Reference: [5] Grauert, H.: Kantenkohomologie.Compos. Math. 44 (1981), 79-101 German. Zbl 0512.32011, MR 0662457
Reference: [6] Henkin, G. M., Leiterer, J.: Andreotti-Grauert Theory by Integral Formulas.Progress in Mathematics 74, Birkhäuser, Boston (1988). Zbl 0654.32002, MR 0986248, 10.1007/978-1-4899-6724-4
Reference: [7] Khidr, S., Barkatou, M.-Y.: Global solutions with $\mathcal C^k$-estimates for $\bar\partial$-equations on $q$-concave intersections.Electron. J. Differ. Equ. 2013 (2013), Paper No. 62, 10 pages. Zbl 1287.32002, MR 3040639
Reference: [8] Laurent-Thiébaut, C., Leiterer, J.: The Andreotti-Vesentini separation theorem with $C^k$ estimates and extension of CR-forms.Several Complex Variables, Proc. Mittag-Leffler Inst., Stockholm, 1987/1988 Math. Notes 38, Princeton Univ. Press, Princeton (1993), 416-439. Zbl 0776.32012, MR 1207871
Reference: [9] Lieb, I., Range, R. M.: Lösungsoperatoren für den Cauchy-Riemann-Komplex mit $\mathcal C^k$-Abschätzungen.Math. Ann. 253 (1980), 145-164 German. Zbl 0441.32007, MR 0597825, 10.1007/BF01578911
Reference: [10] Michel, J.: Randregularität des $\overline\partial$-Problems für stückweise streng pseudokonvexe Gebiete in $\mathbb C^n$.Math. Ann. 280 (1988), 45-68 German. Zbl 0617.32032, MR 0928297, 10.1007/BF01474180
Reference: [11] Michel, J., Perotti, A.: $C^k$-regularity for the $\overline\partial$-equation on strictly pseudoconvex domains with piecewise smooth boundaries.Math. Z. 203 (1990), 415-427. Zbl 0673.32019, MR 1038709, 10.1007/BF02570747
Reference: [12] Ricard, H.: Estimations $\mathcal C^k$ pour l'opérateur de Cauchy-Riemann sur des domaines à coins $q$-convexes et $q$-concaves.Math. Z. 244 (2003), 349-398 French. Zbl 1036.32012, MR 1992543, 10.1007/s00209-003-0504-4
Reference: [13] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables.Math. Nachr. 235 (2002), 179-190 French. Zbl 1007.32012, MR 1889284, 10.1002/1522-2616(200202)235:1<179::AID-MANA179>3.0.CO;2-8
Reference: [14] Sambou, S.: Résolution du $\overline\partial$ pour les courants prolongeables définis dans un anneau.Ann. Fac. Sci. Toulouse, VI. Sér., Math. 11 (2002), 105-129 French. Zbl 1080.32502, MR 1986385, 10.5802/afst.1020
.

Files

Files Size Format View
CzechMathJ_67-2017-2_16.pdf 277.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo