Previous |  Up |  Next

Article

Title: Some finite generalizations of Euler's pentagonal number theorem (English)
Author: Liu, Ji-Cai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 525-531
Summary lang: English
.
Category: math
.
Summary: Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem. (English)
Keyword: $q$-binomial coefficient
Keyword: $q$-binomial theorem
Keyword: pentagonal number theorem
MSC: 05A17
MSC: 11B65
idZBL: Zbl 06738535
idMR: MR3661057
DOI: 10.21136/CMJ.2017.0063-16
.
Date available: 2017-06-01T14:31:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146772
.
Reference: [1] Andrews, G. E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory.Reading, Advanced Book Program, Addison-Wesley Publishing Company, Massachusetts (1976). Zbl 0655.10001, MR 0557013, 10.1002/zamm.19790590632
Reference: [2] Andrews, G. E.: Euler's pentagonal number theorem.Math. Mag. 56 (1983), 279-284. Zbl 0523.01011, MR 0720648, 10.2307/2690367
Reference: [3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions.J. Comb. Theory, Ser. A 100 (2002), 61-93. Zbl 1016.05003, MR 1932070, 10.1006/jcta.2002.3281
Reference: [4] Bromwich, T. J.: An Introduction to the Theory of Infinite Series.Chelsea Publishing Company, New York (1991). Zbl 0901.40001
Reference: [5] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over GF($q$).Electron. J. Comb. 3 (1996), Research paper R2, 2 pages printed version in J. Comb. 3 1996 25-26. Zbl 0851.15010, MR 1364064
Reference: [6] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$.With foreword by Donald E. Knuth, A. K. Peters, Wellesley (1996). Zbl 0848.05002, MR 1379802
Reference: [7] Shanks, D.: A short proof of an identity of Euler.Proc. Am. Math. Soc. 2 (1951), 747-749. Zbl 0044.28403, MR 0043808, 10.1090/S0002-9939-1951-0043808-6
Reference: [8] Warnaar, S. O.: $q$-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem.Ramanujan J. 8 (2004), 467-474. Zbl 1066.05023, MR 2130521, 10.1007/s11139-005-0275-0
.

Files

Files Size Format View
CzechMathJ_67-2017-2_17.pdf 213.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo