Previous |  Up |  Next

Article

Title: On critical values of twisted Artin $L$-functions (English)
Author: Wong, Peng-Jie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 551-555
Summary lang: English
.
Category: math
.
Summary: We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward. (English)
Keyword: Artin $L$-function
Keyword: character
Keyword: Galois Gauss sum
Keyword: special value
MSC: 11F67
MSC: 11F80
MSC: 11L05
MSC: 11M06
idZBL: Zbl 06738538
idMR: MR3661060
DOI: 10.21136/CMJ.2017.0134-16
.
Date available: 2017-06-01T14:33:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146775
.
Reference: [1] Coates, J., Lichtenbaum, S.: On $l$-adic zeta functions.Ann. Math. (2) 98 (1973), 498-550. Zbl 0279.12005, MR 0330107, 10.2307/1970916
Reference: [2] Klingen, H.: Über die Werte der Dedekindschen Zetafunktion.Math. Ann. 145 (1962), 265-272 German. Zbl 0101.03002, MR 0133304, 10.1007/BF01451369
Reference: [3] Martinet, J.: Character theory and Artin $L$-functions.Algebraic Number Fields Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London (1977), 1-87. Zbl 0359.12015, MR 0447187
Reference: [4] Neukirch, J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin (1999). Zbl 0956.11021, MR 1697859, 10.1007/978-3-662-03983-0
Reference: [5] Siegel, C. L.: Über die Fourierschen Koeffizienten von Modulformen.Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15-56 German. Zbl 0225.10031, MR 0285488
Reference: [6] Ward, K.: Values of twisted Artin $L$-functions.Arch. Math. 103 (2014), 285-290. Zbl 1314.11035, MR 3266371, 10.1007/s00013-014-0692-7
.

Files

Files Size Format View
CzechMathJ_67-2017-2_20.pdf 222.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo