Previous |  Up |  Next

Article

Title: The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials (English)
Author: Beberok, Tomasz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 2
Year: 2017
Pages: 537-549
Summary lang: English
.
Category: math
.
Summary: We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q < 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r < 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q < 1, \ |z_1|^{2/n} + |w_2|^r < 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem. (English)
Keyword: Lu Qi-Keng problem
Keyword: Bergman kernel
Keyword: Routh-Hurwitz theorem
Keyword: Jacobi polynomial
MSC: 32A25
MSC: 33D70
idZBL: Zbl 06738537
idMR: MR3661059
DOI: 10.21136/CMJ.2017.0073-16
.
Date available: 2017-06-01T14:32:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146774
.
Reference: [1] Beberok, T.: Lu Qi-Keng’s problem for intersection of two complex ellipsoids.Complex Anal. Oper. Theory 10 (2016), 943-951. Zbl 06601600, MR 3506300, 10.1007/s11785-015-0505-4
Reference: [2] Bergman, S.: Zur Theorie von pseudokonformen Abbildungen.Mat. Sb. (N.S.) 1 (1936), 79-96. Zbl 0014.02603
Reference: [3] Boas, H. P., Fu, S., Straube, E. J.: The Bergman kernel function: Explicit formulas and zeroes.Proc. Amer. Math. Soc. 127 (1999), 805-811. Zbl 0919.32013, MR 1469401, 10.1090/S0002-9939-99-04570-0
Reference: [4] D'Angelo, J. P.: An explicit computation of the Bergman kernel function.J. Geom. Anal. 4 (1994), 23-34. Zbl 0794.32021, MR 1274136, 10.1007/BF02921591
Reference: [5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions.Vol. 1, Bateman Manuscript Project, McGraw-Hill, New York (1953). Zbl 0051.30303, MR 0698779
Reference: [6] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric.Graduate Texts in Mathematics 268, Springer, New York (2013). Zbl 1281.32004, MR 3114665, 10.1007/978-1-4614-7924-6
Reference: [7] Šiljak, D. D., Stipanović, D. M.: Stability of interval two-variable polynomials and quasipolynomials via positivity.Positive Polynomials in Control D. Henrion, et al. Lecture Notes in Control and Inform. Sci. 312, Springer, Berlin (2005), 165-177. Zbl 1138.93392, MR 2123523, 10.1007/10997703_10
Reference: [8] Wang, X.: Recursion formulas for Appell functions.Integral Transforms Spec. Funct. 23 (2012), 421-433. Zbl 1273.33013, MR 2929185, 10.1080/10652469.2011.596483
.

Files

Files Size Format View
CzechMathJ_67-2017-2_19.pdf 277.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo