Previous |  Up |  Next

Article

Title: Some results on quasi-Frobenius rings (English)
Author: Zhu, Zhanmin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 147-151
Summary lang: English
.
Category: math
.
Summary: We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings; and some characterizations improve some results on quasi-Frobenius rings. (English)
Keyword: mininjective ring
Keyword: YJ-injective ring
Keyword: $2$-injective ring
Keyword: JGP-injective ring
Keyword: quasi-Frobenius ring
MSC: 16D50
MSC: 16L30
MSC: 16L60
MSC: 16P60
MSC: 16P70
idZBL: Zbl 06773710
idMR: MR3666937
DOI: 10.14712/1213-7243.2015.202
.
Date available: 2017-06-13T13:21:51Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146784
.
Reference: [1] Björk J.E.: Rings satisfying certain chain conditions.J. Reine Angew. Math. 245 (1970), 63–73. Zbl 0211.36401, MR 0277562
Reference: [2] Camillo V., Yousif M.F.: Continuous rings with ACC on annihilators.Canad. Math. Bull. 34 (1991), no. 4, 462–464. Zbl 0767.16004, MR 1136646, 10.4153/CMB-1991-074-x
Reference: [3] Chen J.L., Zhou Y.Q., Zhu Z.M.: GP-injective rings need not be P-injective.Comm. Algebra 33 (2005), no. 7, 2395–2402. Zbl 1076.16003, MR 2153231, 10.1081/AGB-200058375
Reference: [4] Nam S.B., Kim N.K., Kim J.Y.: On simple GP-injective modules.Comm. Algebra 23 (1995), no. 14, 5437–5444. Zbl 0840.16006, MR 1363614, 10.1080/00927879508825543
Reference: [5] Nicholson W.K., Yousif M.F.: Principally injective rings.J. Algebra 174 (1995), no. 1, 77–93. Zbl 0839.16004, MR 1332860, 10.1006/jabr.1995.1117
Reference: [6] Nicholson W.K., Yousif M.F.: Mininjective rings.J. Algebra 187 (1997), no. 2, 548–578. Zbl 0879.16002, MR 1430998, 10.1006/jabr.1996.6796
Reference: [7] Nicholson W.K., Yousif M.F.: Quasi-Frobenius Rings.Cambridge University Press, Cambridge, 2003. Zbl 1042.16009, MR 2003785
Reference: [8] Rutter E.A.: Rings with the principle extension property.Comm. Algebra 3 (1975), no. 3, 203–212. MR 0382337, 10.1080/00927877508822043
Reference: [9] Yousif M.F., Zhou Y.Q.: Rings for which certain elements have the principal extension property.Algebra Colloq. 10 (2003), no. 4, 501–512. Zbl 1040.16004, MR 2013743
Reference: [10] Yue Chi Ming R.: On regular rings and self-injective rings II.Glasnik Mat. 18 (1983), no. 2, 221–229. Zbl 0528.16006, MR 0733161
Reference: [11] Yue Chi Ming R.: On quasi-Frobeniusean and Artinian rings.Publ. Inst. Math. (Beograd) (N.S.) 33 (1983), no. 47, 239–245. Zbl 0521.16009, MR 0723453
Reference: [12] Yue Chi Ming R.: On regular rings and artinian rings II.Riv. Math. Univ. Parma 11 (1985), no. 4, 101–109. Zbl 0611.16011, MR 0851520
Reference: [13] Yue Chi Ming R.: On p-injectivity, YJ-injectivity and quasi-Frobenius rings.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 33–42. MR 1903305
Reference: [14] Yue Chi Ming R.: On YJ-injectivity and annihilators.Georgian Math. J. 12 (2005), no. 3, 573–581. Zbl 1090.16002, MR 2174959
Reference: [15] Zhou Y.Q.: Rings in which certain right ideal are direct summands of annihilators.J. Aust. Math. Soc. 73 (2002), no. 3, 335–346. MR 1936257, 10.1017/S1446788700009009
Reference: [16] Zhu Z.M.: Almost MGP-injective rings.Ukrainian Math. J. 65 (2014), no. 11, 1634–1641. Zbl 1311.16001, MR 3216859, 10.1007/s11253-014-0885-z
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_2.pdf 217.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo