Previous |  Up |  Next

Article

Title: On a bifurcation problem arising in cholesteric liquid crystal theory (English)
Author: Greco, Carlo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 153-171
Summary lang: English
.
Category: math
.
Summary: In a cholesteric liquid crystal the director field $n(x,y,z)$ tends to form a right-angle helicoid around a twist axis in order to minimize the internal energy; however, a fixed alignment of the director field at the boundary (strong anchoring) can give rise to distorted configurations of the director field, as oblique helicoid, in order to save energy. The transition to this distorted configurations depend on the boundary conditions and on the geometry of the liquid crystal, and it is known as Freedericksz transition (without external fields). We consider the classical situation of a thin layer between two glass sheet assuming the Oseen-Frank model for the energy, and that the director field depend only on the direction $z$ orthogonal to the layer; then we focus on two kinds of boundary conditions: the planar case and the orthogonal case. In the first, we impose that $n(0)=(1,0,0)$, $n(d)=(\cos\alpha,\sin\alpha,0)$ (where $z=0$ and $z=d>0$ are, respectively, the bottom and the top of the layer), and search for the couples $(d,\alpha)$ such that oblique helicoid appear. In the case $K_1>0$, $K_2=K_3=1$ for the elastic constants of the Oseen-Frank energy, we completely characterize these couples. In the second case it is a classical result that oblique helicoid bifurcates from the trivial solution $n(z)=(0,0,1)$ for suitable values of $d$; then we study the exact number of these nontrivial solutions and their stability. (English)
Keyword: bifurcation
Keyword: time map
Keyword: cholesteric liquid crystals
Keyword: Freedericksz transition
MSC: 34B15
MSC: 82D30
idZBL: Zbl 06773711
idMR: MR3666938
DOI: 10.14712/1213-7243.2015.206
.
Date available: 2017-06-13T13:22:14Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146785
.
Reference: [1] Bedford S.: Global minimisers of cholesteric liquid crystal systems.arXiv:1411.3599v2, 2014.
Reference: [2] Bedford S.: Analysis of local minima for constrained minimization problems.arXiv:1411.3595, 2014.
Reference: [3] Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for Engineers and Scientists.Springer, New York, 1971. Zbl 0213.16602, MR 0277773
Reference: [4] Hardt R., Kinderlehrer D., Lin F.H.: Existence and partial regularity of static liquid crystal configurations.Commun. Math. Phys. 105 (1986), 547–570. Zbl 0611.35077, MR 0852090, 10.1007/BF01238933
Reference: [5] Leslie F.M.: Distorted twisted orientation patterns in nematic liquid crystals.Pramana Suppl. 1 (1975), 41–55.
Reference: [6] Leslie F.M.: Some topics in equilibrium theory of liquid crystals.in Theory and Applications of Liquid Crystals, J. Ericksen and D. Kinderlehrer, Eds., Springer, New York, 1987, pp. 211–234. MR 0900827
Reference: [7] Schaaf R.: Global Solution Branches of Two-point Boundary Value Problems.Lecture Notes in Mathematics, 1458, Springer, New York, 1990. Zbl 0780.34010, MR 1090827, 10.1007/BFb0098346
Reference: [8] Stewart I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction.Taylor & Francis, London and New York, 2004.
Reference: [9] Zel'dovic B.Ya., Tabiryan N.V.: Freedericksz transition in cholesteric liquid crystals without external fields.JETP Lett. 34 (1981), no. 8, 406–408.
Reference: [10] Zel'dovic B.Ya., Tabiryan N.V.: Equilibrium structure of a cholesteric with homeotropic orientation on the walls.Sov. Phys. JETP 56 (1982), no. 3, 563–566.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_3.pdf 324.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo