Previous |  Up |  Next

Article

Keywords:
Lorentzian Killing warped product; complete spacelike hypersurfaces; parabolic spacelike hypersurfaces; entire Killing graphs
Summary:
In this paper, we extend a technique due to Romero et al. establishing sufficient conditions to guarantee the parabolicity of complete spacelike hypersurfaces immersed into a Lorentzian Killing warped product whose Riemannian base has parabolic universal Riemannian covering. As applications, we obtain rigidity results concerning these hypersurfaces. A particular study of entire Killing graphs is also made.
References:
[1] Ahlfors L.V.: Sur le type dune surface de Riemann. C.R. Acad. Sc. Paris 201 (1935), 30–32.
[2] Albujer A.L., Aledo J.A., Alías L.J.: On the scalar curvature of hypersurfaces in spaces with Killing field. Adv. Geom. 10 (2010), 487–503. DOI 10.1515/advgeom.2010.017 | MR 2660423
[3] Albujer A.L., Alías L.J.: Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces. J. Geom. Phys. 59 (2009), 620–631. DOI 10.1016/j.geomphys.2009.01.008 | MR 2518991 | Zbl 1173.53025
[4] Albujer A.L., Alías L.J.: Parabolicity of maximal surfaces in Lorentzian product spaces. Math. Z. 267 (2011), 453–464. DOI 10.1007/s00209-009-0630-8 | MR 2772261 | Zbl 1282.53051
[5] Barros A., Brasil A., Caminha A.: Stability of spacelike hypersurfaces in foliated spaces. Differential Geom. Appl. 26 (2008), 357–365. DOI 10.1016/j.difgeo.2007.11.028 | MR 2423377
[6] Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian Geometry. Marcel Dekker Inc., New York, 1996. MR 0619853 | Zbl 0846.53001
[7] Dajczer M., Hinojosa P., de Lira J.H.: Killing graphs with prescribed mean curvature. Calc. Var. Partial Differentail Equations 33 (2008), 231–248. DOI 10.1007/s00526-008-0163-8 | MR 2413108 | Zbl 1152.53046
[8] Caballero M., Romero A., Rubio R.M.: Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson-Walker spacetimes. Lett. Math. Phys. 93 (2010), 85–105. DOI 10.1007/s11005-010-0395-3 | MR 2661525 | Zbl 1208.53066
[9] de Lima H.F., Lima E.A., Jr.: Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space. Beitr. Algebra Geom. 55 (2014), 59–75. DOI 10.1007/s13366-013-0137-7 | MR 3167783 | Zbl 1306.53056
[10] do Carmo M.P.: Riemannian Geometry. Birkhäuser, Basel, New York, 1992. Zbl 1205.53033
[11] Grigor'yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (1999), 135–249. DOI 10.1090/S0273-0979-99-00776-4 | MR 1659871 | Zbl 0927.58019
[12] Huber A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32 (1957), 13–72. DOI 10.1007/BF02564570 | MR 0094452 | Zbl 0080.15001
[13] Kanai M.: Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan 38 (1986), 227-238. DOI 10.2969/jmsj/03820227 | MR 0833199 | Zbl 0577.53031
[14] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. II. Interscience, New York, 1969. MR 0238225 | Zbl 0526.53001
[15] Lee J.M.: Riemannian Manifolds. An Introduction to Curvature. Graduate Texts in Mathematics, 176, Springer, New York, 1997. DOI 10.1007/b98852 | MR 1468735 | Zbl 0905.53001
[16] Lima E.A., Jr., Romero A.: Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes. J. Math. Anal. Appl. 435 (2016), 1352–1363. DOI 10.1016/j.jmaa.2015.10.071 | MR 3429646 | Zbl 1330.53078
[17] Marsden J.E., Tipler F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity. Phys. Rep. 66 (1980), 109–139. DOI 10.1016/0370-1573(80)90154-4 | MR 0598585
[18] Montiel S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529–553. DOI 10.1007/s002080050306 | MR 1704548 | Zbl 0965.53043
[19] O'Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London, 1983. MR 0719023 | Zbl 0531.53051
[20] Romero A., Rubio R.M., Salamanca J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes. Class. Quantum Grav. 30 (2013), 1–13. DOI 10.1088/0264-9381/30/11/115007 | MR 3055096 | Zbl 1271.83011
[21] Romero A., Rubio R.M., Salamanca J.J.: Parabolicity of spacelike hypersurfaces in generalized Robertson-Walker spacetimes. Applications to uniqueness results. Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 8. MR 3092564
[22] Romero A., Rubio R.M., Salamanca J.J.: A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes. J. Math. Anal. Appl. 419 (2014), 355–372. DOI 10.1016/j.jmaa.2014.04.063 | MR 3217154 | Zbl 1295.83063
[23] Stumbles S.M.: Hypersurfaces of constant mean curvature. Ann. Physics 133 (1981), 28–56. DOI 10.1016/0003-4916(81)90240-2 | MR 0626082
Partner of
EuDML logo