Previous |  Up |  Next

Article

Title: Parabolicity and rigidity of spacelike hypersurfaces immersed in a Lorentzian Killing warped product (English)
Author: de Lima, Eudes L.
Author: de Lima, Henrique F.
Author: Lima, Eraldo A. Jr.
Author: Medeiros, Adriano A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 183-196
Summary lang: English
.
Category: math
.
Summary: In this paper, we extend a technique due to Romero et al. establishing sufficient conditions to guarantee the parabolicity of complete spacelike hypersurfaces immersed into a Lorentzian Killing warped product whose Riemannian base has parabolic universal Riemannian covering. As applications, we obtain rigidity results concerning these hypersurfaces. A particular study of entire Killing graphs is also made. (English)
Keyword: Lorentzian Killing warped product
Keyword: complete spacelike hypersurfaces
Keyword: parabolic spacelike hypersurfaces
Keyword: entire Killing graphs
MSC: 53B30
MSC: 53C42
MSC: 53C50
idZBL: Zbl 06773713
idMR: MR3666940
DOI: 10.14712/1213-7243.2015.204
.
Date available: 2017-06-13T13:22:56Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146787
.
Reference: [1] Ahlfors L.V.: Sur le type dune surface de Riemann.C.R. Acad. Sc. Paris 201 (1935), 30–32.
Reference: [2] Albujer A.L., Aledo J.A., Alías L.J.: On the scalar curvature of hypersurfaces in spaces with Killing field.Adv. Geom. 10 (2010), 487–503. MR 2660423, 10.1515/advgeom.2010.017
Reference: [3] Albujer A.L., Alías L.J.: Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces.J. Geom. Phys. 59 (2009), 620–631. Zbl 1173.53025, MR 2518991, 10.1016/j.geomphys.2009.01.008
Reference: [4] Albujer A.L., Alías L.J.: Parabolicity of maximal surfaces in Lorentzian product spaces.Math. Z. 267 (2011), 453–464. Zbl 1282.53051, MR 2772261, 10.1007/s00209-009-0630-8
Reference: [5] Barros A., Brasil A., Caminha A.: Stability of spacelike hypersurfaces in foliated spaces.Differential Geom. Appl. 26 (2008), 357–365. MR 2423377, 10.1016/j.difgeo.2007.11.028
Reference: [6] Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian Geometry.Marcel Dekker Inc., New York, 1996. Zbl 0846.53001, MR 0619853
Reference: [7] Dajczer M., Hinojosa P., de Lira J.H.: Killing graphs with prescribed mean curvature.Calc. Var. Partial Differentail Equations 33 (2008), 231–248. Zbl 1152.53046, MR 2413108, 10.1007/s00526-008-0163-8
Reference: [8] Caballero M., Romero A., Rubio R.M.: Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson-Walker spacetimes.Lett. Math. Phys. 93 (2010), 85–105. Zbl 1208.53066, MR 2661525, 10.1007/s11005-010-0395-3
Reference: [9] de Lima H.F., Lima E.A., Jr.: Generalized maximum principles and the unicity of complete spacelike hypersurfaces immersed in a Lorentzian product space.Beitr. Algebra Geom. 55 (2014), 59–75. Zbl 1306.53056, MR 3167783, 10.1007/s13366-013-0137-7
Reference: [10] do Carmo M.P.: Riemannian Geometry.Birkhäuser, Basel, New York, 1992. Zbl 1205.53033
Reference: [11] Grigor'yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds.Bull. Amer. Math. Soc. 36 (1999), 135–249. Zbl 0927.58019, MR 1659871, 10.1090/S0273-0979-99-00776-4
Reference: [12] Huber A.: On subharmonic functions and differential geometry in the large.Comment. Math. Helv. 32 (1957), 13–72. Zbl 0080.15001, MR 0094452, 10.1007/BF02564570
Reference: [13] Kanai M.: Rough isometries and the parabolicity of Riemannian manifolds.J. Math. Soc. Japan 38 (1986), 227-238. Zbl 0577.53031, MR 0833199, 10.2969/jmsj/03820227
Reference: [14] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. II.Interscience, New York, 1969. Zbl 0526.53001, MR 0238225
Reference: [15] Lee J.M.: Riemannian Manifolds. An Introduction to Curvature.Graduate Texts in Mathematics, 176, Springer, New York, 1997. Zbl 0905.53001, MR 1468735, 10.1007/b98852
Reference: [16] Lima E.A., Jr., Romero A.: Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes.J. Math. Anal. Appl. 435 (2016), 1352–1363. Zbl 1330.53078, MR 3429646, 10.1016/j.jmaa.2015.10.071
Reference: [17] Marsden J.E., Tipler F.J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity.Phys. Rep. 66 (1980), 109–139. MR 0598585, 10.1016/0370-1573(80)90154-4
Reference: [18] Montiel S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes.Math. Ann. 314 (1999), 529–553. Zbl 0965.53043, MR 1704548, 10.1007/s002080050306
Reference: [19] O'Neill B.: Semi-Riemannian Geometry with Applications to Relativity.Academic Press, London, 1983. Zbl 0531.53051, MR 0719023
Reference: [20] Romero A., Rubio R.M., Salamanca J.J.: Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes.Class. Quantum Grav. 30 (2013), 1–13. Zbl 1271.83011, MR 3055096, 10.1088/0264-9381/30/11/115007
Reference: [21] Romero A., Rubio R.M., Salamanca J.J.: Parabolicity of spacelike hypersurfaces in generalized Robertson-Walker spacetimes. Applications to uniqueness results.Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 8. MR 3092564
Reference: [22] Romero A., Rubio R.M., Salamanca J.J.: A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes.J. Math. Anal. Appl. 419 (2014), 355–372. Zbl 1295.83063, MR 3217154, 10.1016/j.jmaa.2014.04.063
Reference: [23] Stumbles S.M.: Hypersurfaces of constant mean curvature.Ann. Physics 133 (1981), 28–56. MR 0626082, 10.1016/0003-4916(81)90240-2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_5.pdf 299.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo