Title:
|
On Hattori spaces (English) |
Author:
|
Bouziad, A. |
Author:
|
Sukhacheva, E. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
213-223 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a subset $A$ of the real line $\mathbb R$, Hattori space $H(A)$ is a topological space whose underlying point set is the reals $\mathbb R$ and whose topology is defined as follows: points from $A$ are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on $A$ which are sufficient and necessary for $H(A)$ to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in Tkacenko sense). Some of these results solve questions raised by V.A. Chatyrko and Y. Hattori. (English) |
Keyword:
|
Hattori space |
Keyword:
|
Čech-complete space |
Keyword:
|
Čech-analytic space |
Keyword:
|
neighborhood assignment |
Keyword:
|
Sorgenfrey line |
Keyword:
|
scattered set |
Keyword:
|
weakly separated space |
MSC:
|
54C05 |
MSC:
|
54C35 |
MSC:
|
54C45 |
MSC:
|
54C99 |
idZBL:
|
Zbl 06773715 |
idMR:
|
MR3666942 |
DOI:
|
10.14712/1213-7243.2015.199 |
. |
Date available:
|
2017-06-13T13:23:39Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146789 |
. |
Reference:
|
[1] Alexandroff P., Urysohn P.: Uber nulldimensionale Punktmengen.Math. Ann. 98 (1928), 89–106. MR 1512393, 10.1007/BF01451582 |
Reference:
|
[2] Bennett H.R., Lutzer D.J.: Generalized ordered spaces with capacities.Pacific J. Math. 112 (1984), no. 1, 11–19. Zbl 0541.54038, MR 0739137, 10.2140/pjm.1984.112.11 |
Reference:
|
[3] Chatyrko V.A., Hattori Y.: A poset of topologies on the set of real numbers.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 189–196. Zbl 1289.54020, MR 3067703 |
Reference:
|
[4] Creede G.D.: Concerning semistratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47 |
Reference:
|
[5] van Douwen E.K.: Closed copies of the rationals.Comment. Math. Univ. Carolin. 28 (1987), no. 1, 137–139. Zbl 0614.54028, MR 0889775 |
Reference:
|
[6] van Douwen E.K.: Retracts of the Sorgenfrey line.Compositio Math. 38 (1979), no. 2, 155–161. Zbl 0408.54004, MR 0528838 |
Reference:
|
[7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[8] Faber M.J.: Metrizability in Generalized Ordered Spaces.Math. Centre Tracts, 53, Math. Centre, Amsterdam, 1974. Zbl 0282.54017, MR 0418053 |
Reference:
|
[9] Fremlin D.H.: Čech-analytic spaces.Note, December 1980. |
Reference:
|
[10] Gittings R.F.: Concerning quasi-complete spaces.General Topology Appl. 6 (1976), no. 1, 73–89. Zbl 0323.54025, MR 0391033, 10.1016/0016-660X(76)90010-6 |
Reference:
|
[11] Hattori Y.: Order and topological structures of posets of the formal balls on metric spaces.Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. Zbl 1196.54048, MR 2650132 |
Reference:
|
[12] Kulesza J.: Results on spaces between the Sorgenfrey and usual topologies on $\mathbb R$.to appear in Topology Appl. |
Reference:
|
[13] van Mill J.: Sierpinski's technique and subsets of $\mathbb R$.Topology Appl. 44 (1992), no. 1-3, 241–261. MR 1173263 |
Reference:
|
[14] Ščepin E.: On topological products, groups, and a new class of spaces more general than metric spaces.Soviet Math. Dokl. 17 (1976), 152-155. MR 0405350 |
Reference:
|
[15] Tkacenko M.G.: Chains and cardinals.Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546–549 (in Russian); English translation: Soviet Math. Dokl. 19 (1978), no. 2, 382–385. MR 0500798 |
. |