Title:
|
Order-theoretic properties of some sets of quasi-measures (English) |
Author:
|
Lipecki, Zbigniew |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
197-212 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathfrak M$ and $\mathfrak R$ be algebras of subsets of a set $\Omega $ with $\mathfrak M\subset \mathfrak R$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak M$ to $\mathfrak R$. We show that $E(\mu )$ is order bounded if and only if it is contained in a principal ideal in $ba(\mathfrak R)$ if and only if it is weakly compact and $\operatorname{extr} E(\mu )$ is contained in a principal ideal in $ba(\mathfrak R)$. We also establish some criteria for the coincidence of the ideals, in $ba(\mathfrak R)$, generated by $E(\mu )$ and $\operatorname{extr} E(\mu )$. (English) |
Keyword:
|
linear lattice |
Keyword:
|
ideal |
Keyword:
|
order bounded |
Keyword:
|
ideal dominated |
Keyword:
|
order unit |
Keyword:
|
Banach lattice |
Keyword:
|
$\textit{AM}$-space |
Keyword:
|
convex set |
Keyword:
|
extreme point |
Keyword:
|
weakly compact |
Keyword:
|
additive set function |
Keyword:
|
quasi-measure |
Keyword:
|
atomic |
Keyword:
|
extension |
MSC:
|
06F20 |
MSC:
|
28A12 |
MSC:
|
28A33 |
MSC:
|
46A55 |
MSC:
|
46B42 |
idZBL:
|
Zbl 06773714 |
idMR:
|
MR3666941 |
DOI:
|
10.14712/1213-7243.2015.208 |
. |
Date available:
|
2017-06-13T13:23:17Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146788 |
. |
Reference:
|
[1] Abramovič Ju. A.: Some theorems on normed lattices.Vestnik Leningrad. Univ. 13 (1971), 5–11 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 4 (1977), 153–159. MR 0288554 |
Reference:
|
[2] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.Academic Press, Orlando, 1978. Zbl 1043.46003, MR 0493242 |
Reference:
|
[3] Bhaskara Rao K.P.S., Bhaskara Rao M.: Theory of Charges. A Study of Finitely Additive Measures.Academic Press, London, 1983. Zbl 0516.28001, MR 0751777 |
Reference:
|
[4] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures.Manuscripta Math. 86 (1995), 349–365. Zbl 1118.28003, MR 1323797, 10.1007/BF02567999 |
Reference:
|
[5] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. II.Manuscripta Math. 89 (1996), 395–406. Zbl 0847.28001, MR 1378601, 10.1007/BF02567525 |
Reference:
|
[6] Lipecki Z.: Cardinality of the set of extreme extensions of a quasi-measure.Manuscripta Math. 104 (2001), 333–341. Zbl 1041.28001, MR 1828879, 10.1007/s002290170031 |
Reference:
|
[7] Lipecki Z.: Cardinality of some convex sets and of their sets of extreme points.Colloq. Math. 123 (2011), 133–147. Zbl 1223.28002, MR 2794124, 10.4064/cm123-1-10 |
Reference:
|
[8] Lipecki Z.: Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure.Dissertationes Math. (Rozprawy Mat.) 493 (2013), 59 pp. Zbl 1283.28002, MR 3135305 |
Reference:
|
[9] Lipecki Z.: Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure.Comment. Math. Univ. Carolin. 56 (2015), 331–345. MR 3390280 |
Reference:
|
[10] Marczewski E.: Measures in almost independent fields.Fund. Math. 38 (1951), 217–229; reprinted in: Marczewski E., Collected Mathematical Papers, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1996, 413–425. Zbl 0045.02303, MR 0047116, 10.4064/fm-38-1-217-229 |
Reference:
|
[11] de Pagter B., Wnuk W.: Some remarks on Banach lattices with non-atomic duals.Indag. Math. (N.S.) 1 (1990), 391–395. Zbl 0731.46008, MR 1075887, 10.1016/0019-3577(90)90026-J |
Reference:
|
[12] Plachky D.: Extremal and monogenic additive set functions.Proc. Amer. Math. Soc. 54 (1976), 193–196. Zbl 0285.28005, MR 0419711, 10.1090/S0002-9939-1976-0419711-3 |
Reference:
|
[13] Schaefer H.H.: Topological Vector Spaces.Macmillan, New York, 1966. Zbl 0983.46002, MR 0193469 |
Reference:
|
[14] Schaefer H.H.: Banach Lattices and Positive Operators.Springer, Berlin and New York, 1974. Zbl 0296.47023, MR 0423039 |
Reference:
|
[15] Schwarz H.-U.: Banach Lattices and Operators.Teubner, Leipzig, 1984. Zbl 0585.47025, MR 0781131 |
Reference:
|
[16] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021 |
. |