Previous |  Up |  Next

Article

Title: Order-theoretic properties of some sets of quasi-measures (English)
Author: Lipecki, Zbigniew
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 197-212
Summary lang: English
.
Category: math
.
Summary: Let $\mathfrak M$ and $\mathfrak R$ be algebras of subsets of a set $\Omega $ with $\mathfrak M\subset \mathfrak R$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak M$ to $\mathfrak R$. We show that $E(\mu )$ is order bounded if and only if it is contained in a principal ideal in $ba(\mathfrak R)$ if and only if it is weakly compact and $\operatorname{extr} E(\mu )$ is contained in a principal ideal in $ba(\mathfrak R)$. We also establish some criteria for the coincidence of the ideals, in $ba(\mathfrak R)$, generated by $E(\mu )$ and $\operatorname{extr} E(\mu )$. (English)
Keyword: linear lattice
Keyword: ideal
Keyword: order bounded
Keyword: ideal dominated
Keyword: order unit
Keyword: Banach lattice
Keyword: $\textit{AM}$-space
Keyword: convex set
Keyword: extreme point
Keyword: weakly compact
Keyword: additive set function
Keyword: quasi-measure
Keyword: atomic
Keyword: extension
MSC: 06F20
MSC: 28A12
MSC: 28A33
MSC: 46A55
MSC: 46B42
idZBL: Zbl 06773714
idMR: MR3666941
DOI: 10.14712/1213-7243.2015.208
.
Date available: 2017-06-13T13:23:17Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146788
.
Reference: [1] Abramovič Ju. A.: Some theorems on normed lattices.Vestnik Leningrad. Univ. 13 (1971), 5–11 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 4 (1977), 153–159. MR 0288554
Reference: [2] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.Academic Press, Orlando, 1978. Zbl 1043.46003, MR 0493242
Reference: [3] Bhaskara Rao K.P.S., Bhaskara Rao M.: Theory of Charges. A Study of Finitely Additive Measures.Academic Press, London, 1983. Zbl 0516.28001, MR 0751777
Reference: [4] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures.Manuscripta Math. 86 (1995), 349–365. Zbl 1118.28003, MR 1323797, 10.1007/BF02567999
Reference: [5] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. II.Manuscripta Math. 89 (1996), 395–406. Zbl 0847.28001, MR 1378601, 10.1007/BF02567525
Reference: [6] Lipecki Z.: Cardinality of the set of extreme extensions of a quasi-measure.Manuscripta Math. 104 (2001), 333–341. Zbl 1041.28001, MR 1828879, 10.1007/s002290170031
Reference: [7] Lipecki Z.: Cardinality of some convex sets and of their sets of extreme points.Colloq. Math. 123 (2011), 133–147. Zbl 1223.28002, MR 2794124, 10.4064/cm123-1-10
Reference: [8] Lipecki Z.: Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure.Dissertationes Math. (Rozprawy Mat.) 493 (2013), 59 pp. Zbl 1283.28002, MR 3135305
Reference: [9] Lipecki Z.: Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure.Comment. Math. Univ. Carolin. 56 (2015), 331–345. MR 3390280
Reference: [10] Marczewski E.: Measures in almost independent fields.Fund. Math. 38 (1951), 217–229; reprinted in: Marczewski E., Collected Mathematical Papers, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1996, 413–425. Zbl 0045.02303, MR 0047116, 10.4064/fm-38-1-217-229
Reference: [11] de Pagter B., Wnuk W.: Some remarks on Banach lattices with non-atomic duals.Indag. Math. (N.S.) 1 (1990), 391–395. Zbl 0731.46008, MR 1075887, 10.1016/0019-3577(90)90026-J
Reference: [12] Plachky D.: Extremal and monogenic additive set functions.Proc. Amer. Math. Soc. 54 (1976), 193–196. Zbl 0285.28005, MR 0419711, 10.1090/S0002-9939-1976-0419711-3
Reference: [13] Schaefer H.H.: Topological Vector Spaces.Macmillan, New York, 1966. Zbl 0983.46002, MR 0193469
Reference: [14] Schaefer H.H.: Banach Lattices and Positive Operators.Springer, Berlin and New York, 1974. Zbl 0296.47023, MR 0423039
Reference: [15] Schwarz H.-U.: Banach Lattices and Operators.Teubner, Leipzig, 1984. Zbl 0585.47025, MR 0781131
Reference: [16] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_6.pdf 314.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo