Previous |  Up |  Next

Article

Title: On boundary value problems for systems of nonlinear generalized ordinary differential equations (English)
Author: Ashordia, Malkhaz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 579-608
Summary lang: English
.
Category: math
.
Summary: A general theorem (principle of a priori boundedness) on solvability of the boundary value problem $$ {\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0 $$ is established, where $f\colon [a,b]\times \mathbb {R}^n\to \mathbb {R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon [a,b]\to \mathbb {R}^{n\times n}$ with bounded total variation components, and $h\colon \operatorname {BV}_s([a,b],\mathbb {R}^n)\to \mathbb {R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal {B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to [a,b]$ $(i=1,2)$ and $\mathcal {B}\colon \operatorname {BV}_s([a,b],\mathbb {R}^{n})\to \mathbb {R}^n$ are continuous operators, and $c_0\in \mathbb {R}^n$. (English)
Keyword: system of nonlinear generalized ordinary differential equations
Keyword: Kurzweil-Stieltjes integral
Keyword: general boundary value problem
Keyword: solvability
Keyword: principle of a priori boundedness
MSC: 34K10
idZBL: Zbl 06770119
idMR: MR3697905
DOI: 10.21136/CMJ.2017.0144-11
.
Date available: 2017-09-01T12:19:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146847
.
Reference: [1] Ashordiya, M. T.: On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations.Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264 Russian. English summary. Zbl 0686.34022, MR 1040252
Reference: [2] Ashordia, M.: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations.Georgian Math. J. 1 (1994), 343-351. Zbl 0808.34015, MR 1262572, 10.1007/BF02307443
Reference: [3] Ashordia, M.: On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations.Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. Zbl 0873.34012, MR 1415807
Reference: [4] Ashordiya, M. T.: Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations.Differ. Equations 32 (1996), 442-450. English. Russian original translation from Differ. Uravn. 32 1996 441-449. Zbl 0884.34029, MR 1436980
Reference: [5] Ashordia, M.: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations.Czech. Math. J. 46 (1996), 385-404. Zbl 0879.34037, MR 1408294
Reference: [6] Ashordiya, M. T.: A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations.Differ. Equations 32 (1996), 1300-1308. English. Russian original translation from Differ. Uravn. 32 1996 1303-1311. Zbl 0894.34012, MR 1601505
Reference: [7] Ashordia, M.: On the correctness of nonlinear boundary value problems for systems of generalized ordinary differential equations.Georgian Math. J. 3 (1996), 501-524. Zbl 0876.34021, MR 1419831, 10.1007/BF02259778
Reference: [8] Ashordia, M.: Conditions for existence and uniqueness of solutions to multipoint boundary value problems for systems of generalized ordinary differential equations.Georgian Math. J. 5 (1998), 1-24. Zbl 0902.34013, MR 1606414, 10.1023/B:GEOR.0000008135.69001.48
Reference: [9] Ashordia, M.: On the solvability of linear boundary value problems for systems of generalized ordinary differential equations.Funct. Differ. Equ. 7 (2000), 39-64. Zbl 1050.34007, MR 1941857
Reference: [10] Ashordia, M.: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems.Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. Zbl 1098.34010, MR 2196660
Reference: [11] Conti, R.: Problèmes linéaires pour les équations différentielles ordinaires.Math. Nachr. 23 (1961), 161-178 French. Zbl 0107.28803, MR 0138818, 10.1002/mana.1961.3210230304
Reference: [12] Groh, J.: A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension.Ill. J. Math. 24 (1980), 244-263. Zbl 0454.45002, MR 0575065, 10.1215/ijm/1256047720
Reference: [13] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations.Ill. J. Math. 3 (1959), 352-373. Zbl 0088.31101, MR 0105600, 10.1215/ijm/1255455257
Reference: [14] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations.J. Sov. Math. 43 (1988), 2259-2339. English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. Zbl 0782.34025, MR 0925829, 10.1007/BF01100360
Reference: [15] Kiguradze, I. T., Půža, B.: On boundary value problems for functional-differential equations.Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. Zbl 0909.34054, MR 1636865
Reference: [16] Kiguradze, I. T., Půža, B.: Theorems of Conti-Opial type for nonlinear functional-differential equations.Differ. Equations 33 (1997), 184-193. English. Russian original translation from Differ. Uravn. 33 1997 185-194. Zbl 0908.34046, MR 1609904
Reference: [17] Kiguradze, I. T., Půža, B.: On the solvability of nonlinear boundary value problems for functional-differential equations.Georgian Math. J. 5 (1998), 251-262. Zbl 0909.34057, MR 1618364, 10.1023/B:GEOR.0000008124.88849.7c
Reference: [18] Kiguradze, I. T., Půža, B.: Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems.Funct. Differ. Equ. 9 (2002), 405-422. Zbl 1048.34108, MR 1971619
Reference: [19] Kiguradze, I. T., Půža, B.: Boundary Value Problems for Systems of Linear Functional Differential Equations.Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). Zbl 1161.34300, MR 2001509
Reference: [20] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [21] Opial, Z.: Linear problems for systems of nonlinear differential equations.J. Differ. Equations 3 (1967), 580-594. Zbl 0161.06102, MR 0216068, 10.1016/0022-0396(67)90018-6
Reference: [22] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5, World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [23] Schwabik, Š., Tvrdý, M.: Boundary value problems for generalized linear differential equations.Czech. Math. J. 29 (1979), 451-477. Zbl 0424.34014, MR 0536070
Reference: [24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints.Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). Zbl 0417.45001, MR 0542283
.

Files

Files Size Format View
CzechMathJ_67-2017-3_1.pdf 380.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo