Previous |  Up |  Next

Article

Title: Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths (English)
Author: Kim, Byoung Soo
Author: Cho, Dong Hyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 609-628
Summary lang: English
.
Category: math
.
Summary: Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\to \mathbb R^{n+1}$ by $$ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), $$ where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0<t_1 < \cdots < t_n\le t$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick's Banach algebra $\mathcal S$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$. (English)
Keyword: analogue of Wiener space
Keyword: analytic conditional Feynman integral
Keyword: change of scale formula
Keyword: conditional Wiener integral
Keyword: Wiener integral
MSC: 28C20
MSC: 60G05
MSC: 60G15
MSC: 60H05
idZBL: Zbl 06770120
idMR: MR3697906
DOI: 10.21136/CMJ.2017.0248-15
.
Date available: 2017-09-01T12:19:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146849
.
Reference: [1] Cameron, R. H.: The translation pathology of Wiener space.Duke Math. J. 21 (1954), 623-627. Zbl 0057.09601, MR 0065033, 10.1215/S0012-7094-54-02165-1
Reference: [2] Cameron, R. H., Martin, W. T.: The behavior of measure and measurability under change of scale in Wiener space.Bull. Am. Math. Soc. 53 (1947), 130-137. Zbl 0032.41801, MR 0019259, 10.1090/S0002-9904-1947-08762-0
Reference: [3] Cameron, R. H., Storvick, D. A.: Some Banach algebras of analytic Feynman integrable functionals.Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67. Zbl 0439.28007, MR 0577446, 10.1007/bfb0097256
Reference: [4] Cameron, R. H., Storvick, D. A.: Change of scale formulas for Wiener integral.Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115. Zbl 0653.28005, MR 0950411
Reference: [5] Chang, K. S., Cho, D. H., Yoo, I.: Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space.Czech. Math. J. 54 (2004), 161-180. Zbl 1047.28008, MR 2040228, 10.1023/B:CMAJ.0000027256.06816.1a
Reference: [6] Cho, D. H.: Change of scale formulas for conditional Wiener integrals as integral transforms over Wiener paths in abstract Wiener space.Commun. Korean Math. Soc. 22 (2007), 91-109. Zbl 1168.28311, MR 2286898, 10.4134/CKMS.2007.22.1.091
Reference: [7] Cho, D. H.: A simple formula for a generalized conditional Wiener integral and its applications.Int. J. Math. Anal., Ruse 7 (2013), 1419-1431. Zbl 1285.28018, MR 3066550, 10.12988/ijma.2013.3363
Reference: [8] Cho, D. H.: Analogues of conditional Wiener integrals with drift and initial distribution on a function space.Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages. MR 3226236, 10.1155/2014/916423
Reference: [9] Cho, D. H.: Scale transformations for present position-dependent conditional expectations over continuous paths.Ann. Funct. Anal. AFA 7 (2016), 358-370. Zbl 1346.46038, MR 3484389, 10.1215/20088752-3544830
Reference: [10] Cho, D. H.: Scale transformations for present position-independent conditional expectations.J. Korean Math. Soc. 53 (2016), 709-723. Zbl 1339.28019, MR 3498289, 10.4134/JKMS.j150285
Reference: [11] Cho, D. H., Kim, B. J., Yoo, I.: Analogues of conditional Wiener integrals and their change of scale transformations on a function space.J. Math. Anal. Appl. 359 (2009), 421-438. Zbl 1175.28010, MR 2546758, 10.1016/j.jmaa.2009.05.023
Reference: [12] Cho, D. H., Yoo, I.: Change of scale formulas for a generalized conditional Wiener integral.Bull. Korean Math. Soc. 53 (2016), 1531-1548. Zbl 1350.28015, MR 3553416, 10.4134/BKMS.b150795
Reference: [13] Im, M. K., Ryu, K. S.: An analogue of Wiener measure and its applications.J. Korean Math. Soc. 39 (2002), 801-819. Zbl 1017.28007, MR 1920906, 10.4134/JKMS.2002.39.5.801
Reference: [14] Kim, B. S.: Relationship between the Wiener integral and the analytic Feynman integral of cylinder function.J. Chungcheong Math. Soc. 27 (2014), 249-260. 10.14403/jcms.2014.27.2.249
Reference: [15] Kuo, H.-H.: Gaussian Measures in Banach Spaces.Lecture Notes in Mathematics 463, Springer, Berlin (1975). Zbl 0306.28010, MR 0461643, 10.1007/BFb0082007
Reference: [16] Pierce, I. D.: On a Family of Generalized Wiener Spaces and Applications.Ph.D. Thesis, The University of Nebraska, Lincoln (2011). MR 2890101
Reference: [17] Ryu, K. S., Im, M. K.: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula.Trans. Am. Math. Soc. 354 (2002), 4921-4951. Zbl 1017.28008, MR 1926843, 10.1090/S0002-9947-02-03077-5
Reference: [18] Yoo, I., Chang, K. S., Cho, D. H., Kim, B. S., Song, T. S.: A change of scale formula for conditional Wiener integrals on classical Wiener space.J. Korean Math. Soc. 44 (2007), 1025-1050. Zbl 1129.28014, MR 2334543, 10.4134/JKMS.2007.44.4.1025
Reference: [19] Yoo, I., Skoug, D.: A change of scale formula for Wiener integrals on abstract Wiener spaces.Int. J. Math. Math. Sci. 17 (1994), 239-247. Zbl 0802.28008, MR 1261069, 10.1155/S0161171294000359
Reference: [20] Yoo, I., Skoug, D.: A change of scale formula for Wiener integrals on abstract Wiener spaces II.J. Korean Math. Soc. 31 (1994), 115-129. Zbl 0802.28009, MR 1269456
Reference: [21] Yoo, I., Song, T. S., Kim, B. S., Chang, K. S.: A change of scale formula for Wiener integrals of unbounded functions.Rocky Mt. J. Math. 34 (2004), 371-389. Zbl 1048.28010, MR 2061137, 10.1216/rmjm/1181069911
.

Files

Files Size Format View
CzechMathJ_67-2017-3_2.pdf 353.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo