Previous |  Up |  Next

Article

Title: The cleanness of (symbolic) powers of Stanley-Reisner ideals (English)
Author: Bandari, Somayeh
Author: Jahan, Ali Soleyman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 767-778
Summary lang: English
.
Category: math
.
Summary: Let $\Delta $ be a pure simplicial complex on the vertex set $[n]=\{1,\ldots ,n\}$ and $I_\Delta $ its Stanley-Reisner ideal in the polynomial ring $S=K[x_1,\ldots ,x_n]$. We show that $\Delta $ is a matroid (complete intersection) if and only if $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$) is clean for all $m\in \mathbb {N}$ and this is equivalent to saying that $S/I_\Delta ^{(m)}$ ($S/I_\Delta ^m$, respectively) is Cohen-Macaulay for all $m\in \mathbb {N}$. By this result, we show that there exists a monomial ideal $I$ with (pretty) cleanness property while $S/I^m$ or $S/I^{(m)}$ is not (pretty) clean for all integer $m\geq 3$. If $\dim (\Delta )=1$, we also prove that $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$) is clean if and only if $S/I_\Delta ^{(2)}$ ($S/I_\Delta ^2$, respectively) is Cohen-Macaulay. (English)
Keyword: clean
Keyword: Cohen-Macaulay simplicial complex
Keyword: complete intersection
Keyword: matroid
Keyword: symbolic power
MSC: 05E40
MSC: 13F20
MSC: 13F55
idZBL: Zbl 06770129
idMR: MR3697915
DOI: 10.21136/CMJ.2017.0173-16
.
Date available: 2017-09-01T12:24:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146858
.
Reference: [1] Achilles, R., Vogel, W.: Über vollständige Durchschnitte in lokalen Ringen.Math. Nachr. 89 (1979), 285-298 German. Zbl 0416.13015, MR 0546888, 10.1002/mana.19790890123
Reference: [2] Bandari, S., Divaani-Aazar, K., Jahan, A. S.: Almost complete intersections and Stanley's conjecture.Kodai Math. J. 37 (2014), 396-404. Zbl 1297.13024, MR 3229083, 10.2996/kmj/1404393894
Reference: [3] Björner, A., Wachs, M. L.: Shellable nonpure complexes and posets. I.Trans. Am. Math. Soc. 348 (1996), 1299-1327. Zbl 0857.05102, MR 1333388, 10.1090/S0002-9947-96-01534-6
Reference: [4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956
Reference: [5] Dress, A.: A new algebraic criterion for shellability.Beitr. Algebra Geom. 34 (1993), 45-55. Zbl 0780.52012, MR 1239277
Reference: [6] Faridi, S.: Monomial ideals via square-free monomial ideals.Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects A. Corso et al. Proc. Conf., Sevilla, 2003. Lecture Notes in Pure and Applied Mathematics 244, Chapman & Hall/CRC, Boca Raton (2006), 85-114. Zbl 1094.13034, MR 2184792, 10.1201/9781420028324.ch8
Reference: [7] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260, Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6
Reference: [8] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes.Manuscr. Math. 121 (2006), 385-410. Zbl 1107.13017, MR 2267659, 10.1007/s00229-006-0044-4
Reference: [9] Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type.Commutative Algebra: Interactions with Algebraic Geometry L. L. Avramov et al. Proc. Conf., Grenoble, 2001, Contemp. Math. 331, AMS, Providence (2003), 171-186. Zbl 1050.13008, MR 2013165, 10.1090/conm/331
Reference: [10] Hoang, D. T., Minh, N. C., Trung, T. N.: Combinatorial characterizations of the Cohen-Macaulayness of the second power of edge ideals.J. Comb. Theory, Ser. A 120 (2013), 1073-1086. Zbl 1277.05174, MR 3033662, 10.1016/j.jcta.2013.02.008
Reference: [11] Jahan, A. S.: Prime filtrations of monomial ideals and polarizations.J. Algebra 312 (2007), 1011-1032. Zbl 1142.13022, MR 2333198, 10.1016/j.jalgebra.2006.11.002
Reference: [12] Minh, N. C., Trung, N. V.: Cohen-Macaulayness of powers of two-dimensional squarefree monomial ideals.J. Algebra 322 (2009), 4219-4227. Zbl 1206.13028, MR 2558862, 10.1016/j.jalgebra.2009.09.014
Reference: [13] Minh, N. C., Trung, N. V.: Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals.Adv. Math. 226 (2011), 1285-1306 corrigendum ibid. 228 2982-2983 2011. Zbl 1204.13015, MR 2737785, 10.1016/j.aim.2010.08.005
Reference: [14] Oxley, J. G.: Matroid Theory.Oxford Graduate Texts in Mathematics 3, Oxford Science Publications, Oxford University Press, Oxford (1992). Zbl 0784.05002, MR 1207587
Reference: [15] Stanley, R. P.: Combinatorics and Commutative Algebra.Progress in Mathematics 41, Birkhäuser, Basel (1996). Zbl 0838.13008, MR 1453579, 10.1007/b139094
Reference: [16] Terai, N., Trung, N. V.: Cohen-Macaulayness of large powers of Stanley-Reisner ideals.Adv. Math. 229 (2012), 711-730. Zbl 1246.13032, MR 2855076, 10.1016/j.aim.2011.10.004
Reference: [17] Varbaro, M.: Symbolic powers and matroids.Proc. Am. Math. Soc. 139 (2011), 2357-2366. Zbl 1223.13012, MR 2784800, 10.1090/S0002-9939-2010-10685-8
Reference: [18] Villarreal, R. H.: Monomial Algebras.Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). Zbl 1002.13010, MR 1800904
.

Files

Files Size Format View
CzechMathJ_67-2017-3_11.pdf 311.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo