Previous |  Up |  Next

Article

Title: Some inequalities for radial Blaschke-Minkowski homomorphisms (English)
Author: Ji, Lewen
Author: Zeng, Zhenbing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 779-793
Summary lang: English
.
Category: math
.
Summary: We establish some Brunn-Minkowski type inequalities for radial Blaschke-Minkowski homomorphisms with respect to Orlicz radial sums and differences of dual quermassintegrals. (English)
Keyword: radial Blaschke-Minkowski homomorphism
Keyword: Orlicz radial sum
MSC: 52A20
MSC: 52A40
idZBL: Zbl 06770130
idMR: MR3697916
DOI: 10.21136/CMJ.2017.0180-16
.
Date available: 2017-09-01T12:24:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146859
.
Reference: [1] Abardia, J., Bernig, A.: Projection bodies in complex vector spaces.Adv. Math. 227 (2011), 830-846. Zbl 1217.52009, MR 2793024, 10.1016/j.aim.2011.02.013
Reference: [2] Alesker, S., Bernig, A., Schuster, F. E.: Harmonic analysis of translation invariant valuations.Geom. Funct. Anal. 21 (2011), 751-773. Zbl 1228.53088, MR 2827009, 10.1007/s00039-011-0125-8
Reference: [3] Beckenbach, E. F., Bellman, R.: Inequalities.Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30, Springer, Berlin (1965). Zbl 0126.28002, MR 0192009
Reference: [4] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions.Ann. Math. (2) 140 (1994), 435-447. Zbl 0826.52010, MR 1298719, 10.2307/2118606
Reference: [5] Gardner, R. J.: Intersection bodies and the Busemann-Petty problem.Trans. Am. Math. Soc. 342 (1994), 435-445. Zbl 0801.52005, MR 1201126, 10.2307/2154703
Reference: [6] Gardner, R. J.: The Brunn-Minkowski inequality.Bull. Am. Math. Soc., New Ser. 39 (2002), 355-405. Zbl 1019.26008, MR 1898210, 10.1090/S0273-0979-02-00941-2
Reference: [7] Gardner, R. J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities.J. Differ. Geom. 97 (2014), 427-476. Zbl 1303.52002, MR 3263511, 10.4310/jdg/1406033976
Reference: [8] Gardner, R. J., Hug, D., Weil, W., Ye, D.: The dual Orlicz-Brunn-Minkowski theory.J. Math. Anal. Appl. 430 (2015), 810-829. Zbl 1320.52008, MR 3351982, 10.1016/j.jmaa.2015.05.016
Reference: [9] Gardner, R. J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies.Ann. Math. (2) 149 (1999), 691-703. Zbl 0937.52003, MR 1689343, 10.2307/120978
Reference: [10] Gardner, R. J., Parapatits, L., Schuster, F. E.: A characterization of Blaschke addition.Adv. Math. 254 (2014), 396-418. Zbl 1291.52011, MR 3161103, 10.1016/j.aim.2013.11.017
Reference: [11] Haberl, C.: Star body valued valuations.Indiana Univ. Math. J. 58 (2009), 2253-2276. Zbl 1183.52003, MR 2583498, 10.1512/iumj.2009.58.3685
Reference: [12] Koldobsky, A.: Intersection bodies, positive definite distributions, and the Busemann-Petty problem.Am. J. Math. 120 (1998), 827-840. Zbl 0914.52001, MR 1637955, 10.1353/ajm.1998.0030
Reference: [13] Koldobsky, A.: Stability in the Busemann-Petty and Shephard problems.Adv. Math. 228 (2011), 2145-2161. Zbl 1228.52006, MR 2836117, 10.1016/j.aim.2011.06.031
Reference: [14] Koldobsky, A., Ma, D.: Stability and slicing inequalities for intersection bodies.Geom. Dedicata 162 (2013), 325-335. Zbl 1261.52003, MR 3009547, 10.1007/s10711-012-9729-x
Reference: [15] Leng, G.: The Brunn-Minkowski inequality for volume differences.Adv. Appl. Math. 32 (2004), 615-624. Zbl 1056.52003, MR 2042686, 10.1016/S0196-8858(03)00095-2
Reference: [16] Ludwig, M.: Projection bodies and valuations.Adv. Math. 172 (2002), 158-168. Zbl 1019.52003, MR 1942402, 10.1016/S0001-8708(02)00021-X
Reference: [17] Ludwig, M.: Intersection bodies and valuations.Am. J. Math. 128 (2006), 1409-1428. Zbl 1115.52007, MR 2275906, 10.1353/ajm.2006.0046
Reference: [18] Lutwak, E.: Dual mixed volumes.Pac. J. Math. 58 (1975), 531-538. Zbl 0273.52007, MR 0380631, 10.2140/pjm.1975.58.531
Reference: [19] Lutwak, E.: Intersection bodies and dual mixed volumes.Adv. Math. 71 (1988), 232-261. Zbl 0657.52002, MR 0963487, 10.1016/0001-8708(88)90077-1
Reference: [20] Lutwak, E.: Inequalities for mixed projection bodies.Trans. Am. Math. Soc. 339 (1993), 901-916. Zbl 0784.52009, MR 1124171, 10.2307/2154305
Reference: [21] Lutwak, E.: The Brunn-Minkowski-Firey theory I. Mixed volumes and the Minkowski problem.J. Differ. Geom. 38 (1993), 131-150. Zbl 0788.52007, MR 1231704, 10.4310/jdg/1214454097
Reference: [22] Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies.J. Differ. Geom. 84 (2010), 365-387. Zbl 1206.49050, MR 2652465, 10.4310/jdg/1274707317
Reference: [23] Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies.Adv. Math. 223 (2010), 220-242. Zbl 05643962, MR 2563216, 10.1016/j.aim.2009.08.002
Reference: [24] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge (2014). Zbl 1287.52001, MR 3155183, 10.1017/CBO9781139003858
Reference: [25] Schuster, F. E.: Volume inequalities and additive maps of convex bodies.Mathematika 53 (2006), 211-234. Zbl 1129.52002, MR 2343256, 10.1112/S0025579300000103
Reference: [26] Schuster, F. E.: Valuations and Busemann-Petty type problems.Adv. Math. 219 (2008), 344-368. Zbl 1146.52003, MR 2435426, 10.1016/j.aim.2008.05.001
Reference: [27] Wang, W.: $L_p$ Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms.Geom. Dedicata 164 (2013), 273-285. Zbl 1280.52007, MR 3054628, 10.1007/s10711-012-9772-7
Reference: [28] Xi, D., Jin, H., Leng, G.: The Orlicz Brunn-Minkowski inequality.Adv. Math. 260 (2014), 350-374. Zbl 06298949, MR 3209355, 10.1016/j.aim.2014.02.036
Reference: [29] Xiong, G., Zou, D.: Orlicz mixed quermassintegrals.Sci. China, Math. 57 (2014), 2549-2562. Zbl 1328.52003, MR 3275405, 10.1007/s11425-014-4812-4
Reference: [30] Zhao, C.-J.: On radial Blaschke-Minkowski homomorphisms.Geom. Dedicata 167 (2013), 1-10. Zbl 1287.52009, MR 3128767, 10.1007/s10711-012-9798-x
Reference: [31] Zhao, C.-J.: Orlicz dual mixed volumes.Result. Math. 68 (2015), 93-104. Zbl 1329.52008, MR 3391494, 10.1007/s00025-014-0424-0
Reference: [32] Zhao, C., Cheung, W.-S.: Radial Blaschke-Minkowski homomorphisms and volume differences.Geom. Dedicata 154 (2011), 81-91. Zbl 1230.52023, MR 2832712, 10.1007/s10711-010-9568-6
Reference: [33] Zhao, C.-J., Leng, G.: Brunn-Minkowski inequality for mixed intersection bodies.J. Math. Anal. Appl. 301 (2005), 115-123. Zbl 1065.52006, MR 2105924, 10.1016/j.jmaa.2004.07.013
Reference: [34] Zhu, B., Zhou, J., Xu, W.: Dual Orlicz-Brunn-Minkowski theory.Adv. Math. 264 (2014), 700-725. Zbl 1307.52004, MR 3250296, 10.1016/j.aim.2014.07.019
.

Files

Files Size Format View
CzechMathJ_67-2017-3_12.pdf 315.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo