Previous |  Up |  Next

Article

Title: Disjoint hypercyclic powers of weighted translations on groups (English)
Author: Zhang, Liang
Author: Lu, Hui-Qiang
Author: Fu, Xiao-Mei
Author: Zhou, Ze-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 839-853
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a locally compact group and let $1 \le p < \infty .$ Recently, Chen et al.\ characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^p(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given. (English)
Keyword: disjoint hypercyclic powers of weighted translations
Keyword: aperiodic element
Keyword: locally compact group
MSC: 46E15
MSC: 47A16
MSC: 47B38
idZBL: Zbl 06770135
idMR: MR3697921
DOI: 10.21136/CMJ.2017.0204-16
.
Date available: 2017-09-01T12:27:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146864
.
Reference: [1] Bayart, F., Matheron, E.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318, 10.1017/CBO9780511581113
Reference: [2] Bernal-González, L.: Disjoint hypercyclic operators.Stud. Math. 182 (2007), 113-131. Zbl 1134.47006, MR 2338480, 10.4064/sm182-2-2
Reference: [3] Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators.J. Math. Anal. Appl. 381 (2011), 843-856. Zbl 1235.47012, MR 2802119, 10.1016/j.jmaa.2011.03.072
Reference: [4] Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators.J. Funct. Anal. 263 (2012), 1283-1322. Zbl 1266.47013, MR 2943730, 10.1016/j.jfa.2012.05.018
Reference: [5] Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity.J. Oper. Theory 72 (2014), 15-40. Zbl 1318.47010, MR 3246979, 10.7900/jot.2012aug20.1970
Reference: [6] Bès, J., Peris, A.: Disjointness in hypercyclicity.J. Math. Anal. Appl. 336 (2007), 297-315. Zbl 1129.47007, MR 2348507, 10.1016/j.jmaa.2007.02.043
Reference: [7] Chen, C. C.: Supercyclic and Cesàro hypercyclic weighted translations on groups.Taiwanese J. Math. 16 (2012), 1815-1827. Zbl 1275.47020, MR 2970687, 10.11650/twjm/1500406799
Reference: [8] Chen, C. C., Chu, C. H.: Hypercyclicity of weighted convolution operators on homogeneous spaces.Proc. Am. Math. Soc. 137 (2009), 2709-2718. Zbl 1177.47013, MR 2497483, 10.1090/S0002-9939-09-09889-X
Reference: [9] Chen, C. C., Chu, C. H.: Hypercyclic weighted translations on groups.Proc. Am. Math. Soc. 139 (2011), 2839-2846. Zbl 1221.47017, MR 2801625, 10.1090/S0002-9939-2011-10718-4
Reference: [10] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos.Universitext, Springer, London (2011). Zbl 1246.47004, MR 2919812, 10.1007/978-1-4471-2170-1
Reference: [11] Grosser, S., Moskowitz, M.: On central topological groups.Trans. Am. Math. Soc. 127 (1967), 317-340. Zbl 0145.03305, MR 0209394, 10.2307/1994651
Reference: [12] Han, S.-A., Liang, Y.-X.: Disjoint hypercyclic weighted translations generated by aperiodic elements.Collect. Math. 67 (2016), 347-356. Zbl 06628127, MR 3536047, 10.1007/s13348-015-0136-0
Reference: [13] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations.Grundlehren der Mathematischen Wissenschaften 115, A Series of Comprehensive Studies in Mathematics, Springer, Berlin (1979). Zbl 0416.43001, MR 0551496
Reference: [14] Liang, Y. X., Xia, L.: Disjoint supercyclic weighted translations generated by aperiodic elements.Collect. Math. 68 (2017), 265-278. Zbl 06748546, MR 3633062, 10.1007/s13348-016-0164-4
Reference: [15] Martin, "O.: Disjoint Hypercyclic and Supercyclic Composition Operators.PhD Thesis, Bowling Green State University, Bowling Green (2010). Zbl 1300.47003, MR 2782297
Reference: [16] Salas, H. N.: Dual disjoint hypercyclic operators.J. Math. Anal. Appl. 374 (2011), 106-117. Zbl 1210.47024, MR 2726191, 10.1016/j.jmaa.2010.09.003
Reference: [17] Shkarin, S.: A short proof of existence of disjoint hypercyclic operators.J. Math. Anal. Appl. 367 (2010), 713-715. Zbl 1196.47006, MR 2607296, 10.1016/j.jmaa.2010.01.005
Reference: [18] Zhang, L., Zhou, Z.-H.: Notes about the structure of common supercyclic vectors.J. Math. Anal. Appl. 418 (2014), 336-343. Zbl 1318.47017, MR 3198882, 10.1016/j.jmaa.2014.04.007
.

Files

Files Size Format View
CzechMathJ_67-2017-3_17.pdf 314.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo