Previous |  Up |  Next

Article

Title: On decomposability of finite groups (English)
Author: Chen, Ruifang
Author: Zhao, Xianhe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 3
Year: 2017
Pages: 827-837
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group. A normal subgroup $N$ of $G$ is a union of several $G$-conjugacy classes, and it is called $n$-decomposable in $G$ if it is a union of $n$ distinct $G$-conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its non-trivial normal subgroups are 2, 3, 4 and 5. (English)
Keyword: non-perfect group
Keyword: $G$-conjugacy class
Keyword: $n$-decomposable group
MSC: 20D10
MSC: 20E45
idZBL: Zbl 06770134
idMR: MR3697920
DOI: 10.21136/CMJ.2017.0197-16
.
Date available: 2017-09-01T12:27:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146863
.
Reference: [1] Ashrafi, A. R.: On decomposability of finite groups.J. Korean Math. Soc. 41 (2004), 479-487. Zbl 1058.20026, MR 2050157, 10.4134/JKMS.2004.41.3.479
Reference: [2] Ashrafi, A. R., Sahraei, H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes.Vietnam J. Math. 30 (2002), 289-294. Zbl 1018.20026, MR 1933567
Reference: [3] Ashrafi, A. R., Venkataraman, G.: On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes.Proc. Indian Acad. Sci., Math. Sci. 114 (2004), 217-224. Zbl 1070.20027, MR 2083462, 10.1007/BF02830000
Reference: [4] Gorenstein, D.: Finite Groups.Chelsea Publishing Company, New York (1980). Zbl 0463.20012, MR 0569209
Reference: [5] Guo, X., Chen, R.: On finite $X$-decomposable groups for $X=\{1, 2, 3, 4\}$.Bull. Iranian Math. Soc. 40 (2014), 1243-1262. Zbl 06572891, MR 3273835
Reference: [6] Guo, X. Y., Li, J., Shum, K. P.: On finite $X$-decomposable groups for $X=\{1, 2, 4\}$.Sib. Math. J. 53 (2012), 444-449 translation from\global\questionmarktrue Sib. Mat. Zh. 53 558-565 2012. Zbl 1257.20031, MR 2978574, 10.1134/S0037446612020255
Reference: [7] Isaacs, I. M.: Character Theory of Finite Groups.Dover Publications, New York (1994). Zbl 0849.20004, MR 1280461
Reference: [8] Riese, U., Shahabi, M. A.: Subgroups which are the union of four conjugacy classes.Commun. Algebra 29 (2001), 695-701. Zbl 0990.20020, MR 1841992, 10.1081/AGB-100001534
Reference: [9] Rose, H. E.: A Course on Finite Groups.Universitext, Springer, London (2009). Zbl 1200.20001, MR 2583713, 10.1007/978-1-84882-889-6
Reference: [10] Shi, W. J.: A class of special minimal normal subgroups.J. Southwest Teachers College 9 (1984), 9-13 Chinese.
Reference: [11] Wang, J.: A special class of normal subgroups.J. Chengdu Univ. Sci. Technol. 1987 (1987), 115-119 Chinese. English summary. Zbl 0671.20022, MR 1028900
.

Files

Files Size Format View
CzechMathJ_67-2017-3_16.pdf 284.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo