Previous |  Up |  Next

Article

Keywords:
Abhyankar's construction; semiring; semifield; finitely generated; additively idempotent
Summary:
Abhyankar proved that every field of finite transcendence degree over $\mathbb{Q}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb{Z}[T_1,\dots, T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.
References:
[1] Abhyankar S.S.: Pillars and towers of quadratic transformations. Proc. Amer. Math. Soc. 139 (2011), 3067–3082. DOI 10.1090/S0002-9939-2011-10731-7 | MR 2811263 | Zbl 1227.14004
[2] El Bashir R., Hurt J., Jančařík A., Kepka T.: Simple commutative semirings. J. Algebra 236 (2001), 277–306. DOI 10.1006/jabr.2000.8483 | MR 1808355 | Zbl 0976.16034
[3] Busaniche M., Cabrer L., Mundici D.: Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups. Forum Math. 24 (2012), 253–271. DOI 10.1515/form.2011.059 | MR 2900005 | Zbl 1277.06007
[4] Di Nola A., Gerla B.: Algebras of Lukasiewicz's logic and their semiring reducts. Contemp. Math. 377 (2005), 131–144. DOI 10.1090/conm/377/06988 | MR 2149001 | Zbl 1081.06009
[5] Di Nola A., Lettieri A.: Perfect MV-algebras are categorically equivalent to abelian $\ell$-groups. Studia Logica 53 (1994), 417–432. DOI 10.1007/BF01057937 | MR 1302453
[6] Golan J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht, 1999. MR 1746739 | Zbl 0947.16034
[7] Ježek J., Kala V., Kepka T.: Finitely generated algebraic structures with various divisibility conditions. Forum Math. 24 (2012), 379–397. DOI 10.1515/form.2011.068 | MR 2900012 | Zbl 1254.16041
[8] Kala V.: Lattice-ordered groups finitely generated as semirings. J. Commut. Alg., to appear, 16 pp., arxiv:1502.01651. MR 3685049
[9] Kala V., Kepka T.: A note on finitely generated ideal-simple commutative semirings. Comment. Math. Univ. Carolin. 49 (2008), 1–9. MR 2432815 | Zbl 1192.16045
[10] Kala V., Kepka T., Korbelář M.: Notes on commutative parasemifields. Comment. Math. Univ. Carolin. 50 (2009), 521–533. MR 2583130 | Zbl 1203.16038
[11] Kala V., Korbelář M.: Idempotence of commutative semifields. preprint, 16 pp.
[12] Kepka T., Korbelář M.: Conjectures on additively divisible commutative semirings. Math. Slovaca 66 (2016), 1059–1064. DOI 10.1515/ms-2016-0203 | MR 3602603
[13] Korbelář M., Landsmann G.: One-generated semirings and additive divisibility. J. Algebra Appl. 16 (2017), 1750038, 22 pp., DOI: 10.1142/S0219498817500384. DOI 10.1142/S0219498817500384 | MR 3608425 | Zbl 1358.16038
[14] Korbelář M.: Torsion and divisibility in finitely generated commutative semirings. Semigroup Forum, to appear; DOI: 10.1007/s00233-016-9827-4. DOI 10.1007/s00233-016-9827-4 | MR 3715842
[15] Leichtnam E.: A classification of the commutative Banach perfect semi-fields of characteristic 1. Applications. to appear in Math. Ann., DOI: 10.1007/s00208-017-1527-1. DOI 10.1007/s00208-017-1527-1 | MR 3694657
[16] Litvinov G.L.: The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. arXiv:math/0507014. MR 2148995 | Zbl 1102.46049
[17] Monico C.J.: Semirings and semigroup actions in public-key cryptography. PhD Thesis, University of Notre Dame, USA, 2002. MR 2703068
[18] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[19] Weinert H.J.: Über Halbringe und Halbkörper I. Acta Math. Acad. Sci. Hungar. 13 (1962), 365–378. DOI 10.1007/BF02020799 | MR 0146108 | Zbl 0125.01002
[20] Weinert H.J., Wiegandt R.: On the structure of semifields and lattice-ordered groups. Period. Math. Hungar. 32 (1996), 147–162. DOI 10.1007/BF01879738 | MR 1407915 | Zbl 0896.12001
[21] Zumbrägel J.: Public-key cryptography based on simple semirings. PhD Thesis, Universität Zürich, Switzerland, 2008.
Partner of
EuDML logo