[5] Di Nola A., Lettieri A.:
Perfect MV-algebras are categorically equivalent to abelian $\ell$-groups. Studia Logica 53 (1994), 417–432.
DOI 10.1007/BF01057937 |
MR 1302453
[8] Kala V.:
Lattice-ordered groups finitely generated as semirings. J. Commut. Alg., to appear, 16 pp., arxiv:1502.01651.
MR 3685049
[9] Kala V., Kepka T.:
A note on finitely generated ideal-simple commutative semirings. Comment. Math. Univ. Carolin. 49 (2008), 1–9.
MR 2432815 |
Zbl 1192.16045
[10] Kala V., Kepka T., Korbelář M.:
Notes on commutative parasemifields. Comment. Math. Univ. Carolin. 50 (2009), 521–533.
MR 2583130 |
Zbl 1203.16038
[11] Kala V., Korbelář M.: Idempotence of commutative semifields. preprint, 16 pp.
[15] Leichtnam E.:
A classification of the commutative Banach perfect semi-fields of characteristic 1. Applications. to appear in Math. Ann., DOI: 10.1007/s00208-017-1527-1.
DOI 10.1007/s00208-017-1527-1 |
MR 3694657
[16] Litvinov G.L.:
The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. arXiv:math/0507014.
MR 2148995 |
Zbl 1102.46049
[17] Monico C.J.:
Semirings and semigroup actions in public-key cryptography. PhD Thesis, University of Notre Dame, USA, 2002.
MR 2703068
[21] Zumbrägel J.: Public-key cryptography based on simple semirings. PhD Thesis, Universität Zürich, Switzerland, 2008.