Previous |  Up |  Next

Article

Title: Semifields and a theorem of Abhyankar (English)
Author: Kala, Vítězslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 267-273
Summary lang: English
.
Category: math
.
Summary: Abhyankar proved that every field of finite transcendence degree over $\mathbb{Q}$ or over a finite field is a homomorphic image of a subring of the ring of polynomials $\mathbb{Z}[T_1,\dots, T_n]$ (for some $n$ depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings. (English)
Keyword: Abhyankar's construction
Keyword: semiring
Keyword: semifield
Keyword: finitely generated
Keyword: additively idempotent
MSC: 12K10
MSC: 13B25
MSC: 16Y60
idZBL: Zbl 06837064
idMR: MR3708772
DOI: 10.14712/1213-7243.2015.216
.
Date available: 2017-11-22T09:17:23Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146905
.
Reference: [1] Abhyankar S.S.: Pillars and towers of quadratic transformations.Proc. Amer. Math. Soc. 139 (2011), 3067–3082. Zbl 1227.14004, MR 2811263, 10.1090/S0002-9939-2011-10731-7
Reference: [2] El Bashir R., Hurt J., Jančařík A., Kepka T.: Simple commutative semirings.J. Algebra 236 (2001), 277–306. Zbl 0976.16034, MR 1808355, 10.1006/jabr.2000.8483
Reference: [3] Busaniche M., Cabrer L., Mundici D.: Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups.Forum Math. 24 (2012), 253–271. Zbl 1277.06007, MR 2900005, 10.1515/form.2011.059
Reference: [4] Di Nola A., Gerla B.: Algebras of Lukasiewicz's logic and their semiring reducts.Contemp. Math. 377 (2005), 131–144. Zbl 1081.06009, MR 2149001, 10.1090/conm/377/06988
Reference: [5] Di Nola A., Lettieri A.: Perfect MV-algebras are categorically equivalent to abelian $\ell$-groups.Studia Logica 53 (1994), 417–432. MR 1302453, 10.1007/BF01057937
Reference: [6] Golan J.S.: Semirings and Their Applications.Kluwer Academic, Dordrecht, 1999. Zbl 0947.16034, MR 1746739
Reference: [7] Ježek J., Kala V., Kepka T.: Finitely generated algebraic structures with various divisibility conditions.Forum Math. 24 (2012), 379–397. Zbl 1254.16041, MR 2900012, 10.1515/form.2011.068
Reference: [8] Kala V.: Lattice-ordered groups finitely generated as semirings.J. Commut. Alg., to appear, 16 pp., arxiv:1502.01651. MR 3685049
Reference: [9] Kala V., Kepka T.: A note on finitely generated ideal-simple commutative semirings.Comment. Math. Univ. Carolin. 49 (2008), 1–9. Zbl 1192.16045, MR 2432815
Reference: [10] Kala V., Kepka T., Korbelář M.: Notes on commutative parasemifields.Comment. Math. Univ. Carolin. 50 (2009), 521–533. Zbl 1203.16038, MR 2583130
Reference: [11] Kala V., Korbelář M.: Idempotence of commutative semifields.preprint, 16 pp.
Reference: [12] Kepka T., Korbelář M.: Conjectures on additively divisible commutative semirings.Math. Slovaca 66 (2016), 1059–1064. MR 3602603, 10.1515/ms-2016-0203
Reference: [13] Korbelář M., Landsmann G.: One-generated semirings and additive divisibility.J. Algebra Appl. 16 (2017), 1750038, 22 pp., DOI: 10.1142/S0219498817500384. Zbl 1358.16038, MR 3608425, 10.1142/S0219498817500384
Reference: [14] Korbelář M.: Torsion and divisibility in finitely generated commutative semirings.Semigroup Forum, to appear; DOI: 10.1007/s00233-016-9827-4. MR 3715842, 10.1007/s00233-016-9827-4
Reference: [15] Leichtnam E.: A classification of the commutative Banach perfect semi-fields of characteristic 1. Applications.to appear in Math. Ann., DOI: 10.1007/s00208-017-1527-1. MR 3694657, 10.1007/s00208-017-1527-1
Reference: [16] Litvinov G.L.: The Maslov dequantization, idempotent and tropical mathematics: a brief introduction.arXiv:math/0507014. Zbl 1102.46049, MR 2148995
Reference: [17] Monico C.J.: Semirings and semigroup actions in public-key cryptography.PhD Thesis, University of Notre Dame, USA, 2002. MR 2703068
Reference: [18] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [19] Weinert H.J.: Über Halbringe und Halbkörper I.Acta Math. Acad. Sci. Hungar. 13 (1962), 365–378. Zbl 0125.01002, MR 0146108, 10.1007/BF02020799
Reference: [20] Weinert H.J., Wiegandt R.: On the structure of semifields and lattice-ordered groups.Period. Math. Hungar. 32 (1996), 147–162. Zbl 0896.12001, MR 1407915, 10.1007/BF01879738
Reference: [21] Zumbrägel J.: Public-key cryptography based on simple semirings.PhD Thesis, Universität Zürich, Switzerland, 2008.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_1.pdf 257.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo