Previous |  Up |  Next


join-semilattice; lattice; join-irreducible; dependency; chain condition; particle; atomistic; congruence
We attach to each $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ a graph $\boldsymbol G_{\boldsymbol S}$ whose vertices are join-irreducible elements of $\boldsymbol S$ and whose edges correspond to the reflexive dependency relation. We study properties of the graph $\boldsymbol G_{\boldsymbol S}$ both when $\boldsymbol S$ is a join-semilattice and when it is a lattice. We call a $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ particle provided that the set of its join-irreducible elements satisfies DCC and join-generates $\boldsymbol S$. We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of the corresponding graph that are closed in a certain zero-dimensional topology. Thus we extend the result known for principally chain finite lattices.
[1] Day A.: Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices. Canad. J. Math. 31 (1979), 69–78. DOI 10.4153/CJM-1979-008-x | MR 0518707 | Zbl 0432.06007
[2] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[3] Freese R., Ježek J., Nation J.B.: Free Lattices. Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, Rhode Island, 1995. DOI 10.1090/surv/042 | MR 1319815 | Zbl 0839.06005
[4] Grätzer G.: General Lattice Theory. second edition, Birkhäuser, Basel, 1998. MR 1670580
[5] Grätzer G., Schmidt E.T.: On congruence lattices of lattices. Acta Math. Acad. Sci. Hungar. 13 (1962), 179–185. DOI 10.1007/BF02033636 | MR 0139551 | Zbl 0101.02103
[6] König D.: Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. (Szeged) 3 (1927), 121–130.
[7] Nation J.B.: Notes on lattice theory. available online.
[8] Pudlák P., Tůma J.: Yeast graphs and fermentation of lattices. Lattice Theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai, vol. 14, North-Holland, Amsterdam, 1976, pp. 301–341. MR 0441799
[9] Rhodes J.B.: Modular and distributive semilattices. Trans. Amer. Math. Soc. 201 (1975), 31–41. DOI 10.1090/S0002-9947-1975-0351935-X | MR 0351935 | Zbl 0326.06006
[10] Tischendorf M.: The representation problem for algebraic distributive lattices. Ph.D. Thesis, TH Darmstadt, 1992.
[11] Wehrung F.: Representation of algebraic distributive lattices vith $\aleph _1$ compact elements as ideal lattices of regular rings. Publ. Mat. (Barcelona) 44 (2000), 419–435. DOI 10.5565/PUBLMAT_44200_03 | MR 1800815
Partner of
EuDML logo