Previous |  Up |  Next

Article

Title: The graphs of join-semilattices and the shape of congruence lattices of particle lattices (English)
Author: Růžička, Pavel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 275-291
Summary lang: English
.
Category: math
.
Summary: We attach to each $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ a graph $\boldsymbol G_{\boldsymbol S}$ whose vertices are join-irreducible elements of $\boldsymbol S$ and whose edges correspond to the reflexive dependency relation. We study properties of the graph $\boldsymbol G_{\boldsymbol S}$ both when $\boldsymbol S$ is a join-semilattice and when it is a lattice. We call a $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ particle provided that the set of its join-irreducible elements satisfies DCC and join-generates $\boldsymbol S$. We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of the corresponding graph that are closed in a certain zero-dimensional topology. Thus we extend the result known for principally chain finite lattices. (English)
Keyword: join-semilattice
Keyword: lattice
Keyword: join-irreducible
Keyword: dependency
Keyword: chain condition
Keyword: particle
Keyword: atomistic
Keyword: congruence
MSC: 06A12
MSC: 06A15
MSC: 06B10
MSC: 06F30
idZBL: Zbl 06837065
idMR: MR3708773
DOI: 10.14712/1213-7243.2015.214
.
Date available: 2017-11-22T09:18:26Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146911
.
Reference: [1] Day A.: Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices.Canad. J. Math. 31 (1979), 69–78. Zbl 0432.06007, MR 0518707, 10.4153/CJM-1979-008-x
Reference: [2] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [3] Freese R., Ježek J., Nation J.B.: Free Lattices.Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, Rhode Island, 1995. Zbl 0839.06005, MR 1319815, 10.1090/surv/042
Reference: [4] Grätzer G.: General Lattice Theory.second edition, Birkhäuser, Basel, 1998. MR 1670580
Reference: [5] Grätzer G., Schmidt E.T.: On congruence lattices of lattices.Acta Math. Acad. Sci. Hungar. 13 (1962), 179–185. Zbl 0101.02103, MR 0139551, 10.1007/BF02033636
Reference: [6] König D.: Über eine Schlussweise aus dem Endlichen ins Unendliche.Acta Sci. Math. (Szeged) 3 (1927), 121–130.
Reference: [7] Nation J.B.: Notes on lattice theory.available online.
Reference: [8] Pudlák P., Tůma J.: Yeast graphs and fermentation of lattices.Lattice Theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai, vol. 14, North-Holland, Amsterdam, 1976, pp. 301–341. MR 0441799
Reference: [9] Rhodes J.B.: Modular and distributive semilattices.Trans. Amer. Math. Soc. 201 (1975), 31–41. Zbl 0326.06006, MR 0351935, 10.1090/S0002-9947-1975-0351935-X
Reference: [10] Tischendorf M.: The representation problem for algebraic distributive lattices.Ph.D. Thesis, TH Darmstadt, 1992.
Reference: [11] Wehrung F.: Representation of algebraic distributive lattices vith $\aleph _1$ compact elements as ideal lattices of regular rings.Publ. Mat. (Barcelona) 44 (2000), 419–435. MR 1800815, 10.5565/PUBLMAT_44200_03
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_2.pdf 351.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo