Previous |  Up |  Next

Article

Title: Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems (English)
Author: Tang, Yaozong
Author: Li, Xiaolin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 5
Year: 2017
Pages: 477-492
Summary lang: English
.
Category: math
.
Summary: The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method. (English)
Keyword: meshless
Keyword: element-free Galerkin method
Keyword: hyperbolic partial differential equation
Keyword: error estimate
Keyword: convergence
MSC: 65M60
MSC: 65N12
MSC: 65N30
idZBL: Zbl 06819517
idMR: MR3722900
DOI: 10.21136/AM.2017.0061-17
.
Date available: 2017-10-31T09:00:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146917
.
Reference: [1] Abbasbandy, S., Ghehsareh, H. Roohani, Hashim, I., Alsaedi, A.: A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 47 (2014), 10-20. Zbl 1297.65125, MR 3233886, 10.1016/j.enganabound.2014.04.006
Reference: [2] Belytschko, T., Lu, Y. Y., Gu, L.: Element-free Galerkin methods.Int. J. Numer. Methods Eng. 37 (1994), 229-256. Zbl 0796.73077, MR 1256818, 10.1002/nme.1620370205
Reference: [3] Berger, M. J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations.J. Comput. Phys. 53 (1984), 484-512. Zbl 0536.65071, MR 0739112, 10.1016/0021-9991(84)90073-1
Reference: [4] Cheng, Y. M.: Meshless Methods.Science Press, Beijing (2015), Chinese.
Reference: [5] Cheng, R.-J., Ge, H.-X.: Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation.Chin. Phys. B. 18 (2009), 4059-4064. 10.1088/1674-1056/18/10/001
Reference: [6] Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation.Eng. Anal. Bound. Elem. 34 (2010), 324-336. Zbl 1244.65147, MR 2585262, 10.1016/j.enganabound.2009.10.010
Reference: [7] Dehghan, M., Ghesmati, A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method.Eng. Anal. Bound. Elem. 34 (2010), 51-59. Zbl 1244.65137, MR 2559257, 10.1016/j.enganabound.2009.07.002
Reference: [8] Dehghan, M., Salehi, R.: A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation.Math. Methods Appl. Sci. 35 (2012), 1220-1233. Zbl 1250.35015, MR 2945847, 10.1002/mma.2517
Reference: [9] Dehghan, M., Shokri, A.: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions.Numer. Methods Partial Differ. Equations 25 (2009), 494-506. Zbl 1159.65084, MR 2483780, 10.1002/num.20357
Reference: [10] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019
Reference: [11] Hu, X., Huang, P., Feng, X.: A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation.Appl. Math., Praha 61 (2016), 27-45. Zbl 06562145, MR 3455166, 10.1007/s10492-016-0120-3
Reference: [12] Jiang, Z., Su, L., Jiang, T.: A meshfree method for numerical solution of nonhomogeneous time-dependent problems.Abstr. Appl. Anal. 2014 (2014), Article ID 978310, 11 pages. MR 3246371, 10.1155/2014/978310
Reference: [13] Li, X.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations.Appl. Numer. Math. 61 (2011), 1237-1256. Zbl 1232.65160, MR 2851120, 10.1016/j.apnum.2011.08.003
Reference: [14] Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in {$n$}-dimensional spaces.Appl. Numer. Math. 99 (2016), 77-97. Zbl 1329.65274, MR 3413894, 10.1016/j.apnum.2015.07.006
Reference: [15] Li, X., Li, S.: On the stability of the moving least squares approximation and the element-free Galerkin method.Comput. Math. Appl. 72 (2016), 1515-1531. Zbl 1361.65090, MR 3545373, 10.1016/j.camwa.2016.06.047
Reference: [16] Li, X., Li, S.: Analysis of the complex moving least squares approximation and the associated element-free Galerkin method.Appl. Math. Model. 47 (2017), 45-62. MR 3659439, 10.1016/j.apm.2017.03.019
Reference: [17] Li, X., Wang, Q.: Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases.Eng. Anal. Bound. Elem. 73 (2016), 21-34. MR 3581428, 10.1016/j.enganabound.2016.08.012
Reference: [18] Li, X., Zhang, S., Wang, Y., Chen, H.: Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations.Comput. Math. Appl. 71 (2016), 1655-1678. MR 3481094, 10.1016/j.camwa.2016.03.007
Reference: [19] Liu, G. R.: Meshfree Methods. Moving Beyond the Finite Element Method.CRC Press, Boca Raton (2010). Zbl 1205.74003, MR 2574356, 10.1201/9781420082104
Reference: [20] Szekeres, B. J., Izsák, F.: Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems.Appl. Math., Praha 62 (2017), 15-36. Zbl 06738479, MR 3615476, 10.21136/AM.2017.0385-15
Reference: [21] Tang, Y.-Z., Li, X.-L.: Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems.Chin. Phys. B. 26 (2017), 030203. 10.1088/1674-1056/26/3/030203
Reference: [22] Thomas, J. W.: Numerical Partial Differential Equations: Finite Difference Methods.Texts in Applied Mathematics 22 Springer, New York (1995). Zbl 0831.65087, MR 1367964, 10.1007/978-1-4899-7278-1
Reference: [23] Zhang, S., Li, X.: Boundary augmented Lagrangian method for the Signorini problem.Appl. Math., Praha 61 (2016), 215-231. Zbl 06562154, MR 3470774, 10.1007/s10492-016-0129-7
.

Files

Files Size Format View
AplMat_62-2017-5_3.pdf 1.217Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo