Previous |  Up |  Next

Article

Title: Characterizations of continuous distributions through inequalities involving the expected values of selected functions (English)
Author: Goodarzi, Faranak
Author: Amini, Mohammad
Author: Mohtashami Borzadaran, Gholam Reza
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 5
Year: 2017
Pages: 493-507
Summary lang: English
.
Category: math
.
Summary: Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In this paper, we generalize their results and characterize some distributions through functions used by them and Glaser's function. Kundu and Ghosh (2016) obtained similar results using reversed hazard rate, expected inactivity time and reversed aging intensity functions. We also, via $w(\cdot )$-function defined by Cacoullos and Papathanasiou (1989), characterize exponential and logistic distributions, as well as Type 3 extreme value distribution and obtain bounds for the expected values of selected functions in reliability theory. Moreover, a bound for the varentropy of random variable $X$ is provided. (English)
Keyword: characterization
Keyword: hazard rate
Keyword: mean residual life function
Keyword: reversed hazard rate
Keyword: expected inactivity time
Keyword: log-odds rate
Keyword: Glaser's function
MSC: 60E15
MSC: 62E10
idZBL: Zbl 06819518
idMR: MR3722901
DOI: 10.21136/AM.2017.0182-16
.
Date available: 2017-10-31T09:01:03Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146918
.
Reference: [1] Asadi, M., Berred, A.: Properties and estimation of the mean past lifetime.Statistics 46 (2012), 405-417. Zbl 1241.62140, MR 2929163, 10.1080/02331888.2010.540666
Reference: [2] Asadi, M., Zohrevand, Y.: On the dynamic cumulative residual entropy.J. Stat. Plann. Inference 137 (2007), 1931-1941. Zbl 1118.62006, MR 2323874, 10.1016/j.jspi.2006.06.035
Reference: [3] Bhattacharjee, M. C.: The class of mean residual lives and some consequences.SIAM J. Algebraic Discrete Methods 3 (1982), 56-65. Zbl 0495.60091, MR 0644957, 10.1137/0603006
Reference: [4] Bhattacharjee, S., Nanda, A. K., Misra, S. K.: Inequalities involving expectations to characterize distributions.Stat. Probab. Lett. 83 (2013), 2113-2118. Zbl 1285.60010, MR 3079054, 10.1016/j.spl.2013.05.022
Reference: [5] Cacoullos, T., Papathanasiou, V.: On upper bounds for the variance of functions of random variables.Stat. Probab. Lett. 3 (1985), 175-184. Zbl 0572.60021, MR 0801687, 10.1016/0167-7152(85)90014-8
Reference: [6] Cacoullos, T., Papathanasiou, V.: Characterizations of distributions by variance bounds.Stat. Probab. Lett. 7 (1989), 351-356. Zbl 0677.62012, MR 1001133, 10.1016/0167-7152(89)90050-3
Reference: [7] Chandra, N. K., Roy, D.: Some results on reversed hazard rate.Probab. Eng. Inf. Sci. 15 (2001), 95-102. Zbl 1087.62510, MR 1825537, 10.1017/S0269964801151077
Reference: [8] Fradelizi, M., Madiman, M., Wang, L.: Optimal concentration of information content for log-concave densities.High Dimensional Probability VII Progress in Probability 71, Birkhäuser, Springer C. Houdré, et al. (2016), 45-60. Zbl 1358.60036, MR 3565259, 10.1007/978-3-319-40519-3_3
Reference: [9] Guess, F., Proschan, F.: Mean residual life: Theory and applications.P. R. Krishnaiah, et al. Handbook of Statistics 7 Elsevier Science Publishers, Atlanta 215-224 (1988). 10.1016/S0169-7161(88)07014-2
Reference: [10] Gupta, R. C.: On the mean residual life function in survival studies.Statistical Distributions in Scientific Work, Vol. 5 (Trieste, 1980) Proc. NATO Adv. Study Inst. (Trieste 1980), Reidel, Dordrecht (1981), 327-334. Zbl 0474.62092, MR 0656346, 10.1007/978-94-009-8552-0_26
Reference: [11] Gupta, R. C., Kirmani, S. N. U. A.: Some characterization of distributions by functions of failure rate and mean residual life.Commun. Stat., Theory Methods 33 (2004), 3115-3131. Zbl 1087.62014, MR 2138677, 10.1081/STA-200039060
Reference: [12] Gupta, R. C., Warren, R.: Determination of change points of non-monotonic failure rates.Commun. Stat., Theory Methods 30 (2001), 1903-1920. Zbl 0991.62085, MR 1861623, 10.1081/STA-100105704
Reference: [13] Gut, A.: Probability: A Graduate Course.Springer Texts in Statistics, Springer, New York (2013). Zbl 1267.60001, MR 2977961, 10.1007/978-1-4614-4708-5
Reference: [14] Hall, W. J., Wellner, J. A.: Mean residual life.Statistics and Related Topics M. Csörgö, et al. Proc. Int. Symp. (Ottawa 1980), North Holland Publishing, Amsterdam 169-184 (1981). Zbl 0481.62078, MR 0665274
Reference: [15] Iwińska, M., Szymkowiak, M.: Characterizations of distributions through selected functions of reliability theory.Commun. Stat., Theory Methods 46 (2017), 69-74. Zbl 06708605, MR 3553015, 10.1080/03610926.2014.985837
Reference: [16] Jiang, R., Ji, P., Xiao, X.: Aging property of unimodal failure rate models.Reliab. Eng. Syst. Saf. 79 (2003), 113-116. 10.1016/S0951-8320(02)00175-8
Reference: [17] Johnson, O.: Information Theory and the Central Limit Theorem.Imperial College Press, London (2004). Zbl 1061.60019, MR 2109042
Reference: [18] Kundu, C., Ghosh, A.: Inequalities involving expectations of selected functions in reliability theory to characterize distributions.Commun. Stat., Theory Methods 46 (2017), 8468-8478. MR 3680770, 10.1080/03610926.2016.1183784
Reference: [19] Kundu, C., Nanda, A. K., Maiti, S. S.: Some distributional results through past entropy.J. Stat. Plann. Inference 140 (2010), 1280-1291. Zbl 1186.60012, MR 2581130, 10.1016/j.jspi.2009.11.011
Reference: [20] Nanda, A. K.: Characterization of distributions through failure rate and mean residual life functions.Stat. Probab. Lett. 80 (2010), 752-755. Zbl 1185.62031, MR 2608812, 10.1016/j.spl.2010.01.006
Reference: [21] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy.J. Stat. Plann. Inference 140 (2010), 310-322. Zbl 1177.62005, MR 2568141, 10.1016/j.jspi.2009.07.015
Reference: [22] Wang, L.: Heat Capacity Bound, Energy Fluctuations and Convexity.Ph.D. Thesis, Yale University (2014). MR 3337578
.

Files

Files Size Format View
AplMat_62-2017-5_4.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo