Previous |  Up |  Next

Article

Title: On the intersection graph of a finite group (English)
Author: Shahsavari, Hossein
Author: Khosravi, Behrooz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1145-1153
Summary lang: English
.
Category: math
.
Summary: For a finite group $G$, the intersection graph of $G$ which is denoted by $\Gamma (G)$ is an undirected graph such that its vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\neq 1$. In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of ${\rm Aut}(\Gamma (G))$. (English)
Keyword: intersection graph
Keyword: regular graph
Keyword: simple group
Keyword: automorphism group
MSC: 05C25
MSC: 20E32
idZBL: Zbl 06819578
idMR: MR3736024
DOI: 10.21136/CMJ.2017.0446-16
.
Date available: 2017-11-20T14:59:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146972
.
Reference: [1] Akbari, S., Heydari, F., Maghasedi, M.: The intersection graph of a group.J. Algebra Appl. 14 (2015), Article ID 1550065, 9 pages. Zbl 1309.05090, MR 3323326, 10.1142/S0219498815500656
Reference: [2] Ballester-Bolinches, A., Esteban-Romero, R., Robinson, D. J. S.: On finite minimal non-nilpotent groups.Proc. Am. Math. Soc. 133 (2005), 3455-3462. Zbl 1082.20006, MR 2163579, 10.1090/S0002-9939-05-07996-7
Reference: [3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219
Reference: [4] Csákány, B., Pollák, G.: The graph of subgroups of a finite group.Czech. Math. J. 19 (1969), 241-247 Russian. Zbl 0218.20019, MR 0249328
Reference: [5] M. Hall, Jr.: The Theory of Groups.Chelsea Publishing Company, New York (1976). Zbl 0919.20001, MR 0414669
Reference: [6] Kayacan, S., Yaraneri, E.: Abelian groups with isomorphic intersection graphs.Acta Math. Hung. 146 (2015), 107-127. Zbl 06659409, MR 3348183, 10.1007/s10474-015-0486-9
Reference: [7] Kayacan, S., Yaraneri, E.: Finite groups whose intersection graphs are planar.J. Korean Math. Soc. 52 (2015), 81-96. Zbl 1314.20016, MR 3299371, 10.4134/JKMS.2015.52.1.081
Reference: [8] King, C. S. H.: Generation of finite simple groups by an involution and an element of prime order.J. Algebra 478 (2017), 153-173. Zbl 06695595, MR 3621666, 10.1016/j.jalgebra.2016.12.031
Reference: [9] Ma, X.: On the diameter of the intersection graph of a finite simple group.Czech. Math. J. 66 (2016), 365-370. Zbl 06604472, MR 3519607, 10.1007/s10587-016-0261-2
Reference: [10] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1
Reference: [11] Shen, R.: Intersection graphs of subgroups of finite groups.Czech. Math. J. 60 (2010), 945-950. Zbl 1208.20022, MR 2738958, 10.1007/s10587-010-0085-4
Reference: [12] Zelinka, B.: Intersection graphs of finite abelian groups.Czech. Math. J. 25 (1975), 171-174. Zbl 0311.05119, MR 0372075
.

Files

Files Size Format View
CzechMathJ_67-2017-4_18.pdf 256.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo