Previous |  Up |  Next

Article

Title: Unicyclic graphs with bicyclic inverses (English)
Author: Panda, Swarup Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 1133-1143
Summary lang: English
.
Category: math
.
Summary: A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses. (English)
Keyword: adjacency matrix
Keyword: unicyclic graph
Keyword: bicyclic graph
Keyword: inverse graph
Keyword: perfect matching
MSC: 05C50
MSC: 15A09
idZBL: Zbl 06819577
idMR: MR3736023
DOI: 10.21136/CMJ.2017.0429-16
.
Date available: 2017-11-20T14:59:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146971
.
Reference: [1] Akbari, S., Kirkland, S. J.: On unimodular graphs.Linear Algebra Appl. 421 (2007), 3-15. Zbl 1108.05060, MR 2290681, 10.1016/j.laa.2006.10.017
Reference: [2] Barik, S., Neumann, M., Pati, S.: On nonsingular trees and a reciprocal eigenvalue property.Linear Multilinear Algebra 54 (2006), 453-465. Zbl 1119.05064, MR 2259602, 10.1080/03081080600792897
Reference: [3] Buckley, F., Doty, L. L., Harary, F.: On graphs with signed inverses.Networks 18 (1988), 151-157. Zbl 0646.05061, MR 0953918, 10.1002/net.3230180302
Reference: [4] Cvetković, D. M., Gutman, I., Simić, S. K.: On self-pseudo-inverse graphs.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. Zbl 0437.05047, MR 0580431
Reference: [5] Frucht, R., Harary, F.: On the corona of two graphs.Aequationes Mathematicae 4 (1970), 322-325. Zbl 0198.29302, MR 0281659, 10.1007/BF01844162
Reference: [6] Godsil, C. D.: Inverses of trees.Combinatorica 5 (1985), 33-39. Zbl 0578.05049, MR 0803237, 10.1007/BF02579440
Reference: [7] Harary, F.: On the notion of balance of a signed graph.Mich. Math. J. 2 (1953), 143-146. Zbl 0056.42103, MR 0067468, 10.1307/mmj/1028989917
Reference: [8] Harary, F., Minc, H.: Which nonnegative matrices are self-inverse?.Math. Mag. 49 (1976), 91-92. Zbl 0321.15008, MR 0396629, 10.2307/2689442
Reference: [9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings.Electron. J. Linear Algebra 29 (2015), 89-101. Zbl 1323.05107, MR 3414587, 10.13001/1081-3810.2865
Reference: [10] Panda, S. K., Pati, S.: On some graphs which possess inverses.Linear Multilinear Algebra 64 (2016), 1445-1459. Zbl 1341.05216, MR 3490639, 10.1080/03081087.2015.1091434
Reference: [11] Pavlíková, S., Krč-Jediný, J.: On the inverse and the dual index of a tree.Linear Multilinear Algebra 28 (1990), 93-109. Zbl 0745.05018, MR 1077739, 10.1080/03081089008818034
Reference: [12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching.Combinatorica 9 (1989), 85-89. Zbl 0688.05056, MR 1010303, 10.1007/BF02122687
Reference: [13] Tifenbach, R. M.: Strongly self-dual graphs.Linear Algebra Appl. 435 (2011), 3151-3167. Zbl 1226.05170, MR 2831603, 10.1016/j.laa.2011.05.010
Reference: [14] Tifenbach, R. M., Kirkland, S. J.: Directed intervals and the dual of a graph.Linear Algebra Appl. 431 (2009), 792-807. Zbl 1226.05171, MR 2535551, 10.1016/j.laa.2009.03.032
Reference: [15] Yates, K.: Hückel Molecular Orbital Theory.Academic Press (1978). 10.1016/b978-0-12-768850-3.x5001-9
.

Files

Files Size Format View
CzechMathJ_67-2017-4_17.pdf 274.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo