Title:
|
Unicyclic graphs with bicyclic inverses (English) |
Author:
|
Panda, Swarup Kumar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
1133-1143 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses. (English) |
Keyword:
|
adjacency matrix |
Keyword:
|
unicyclic graph |
Keyword:
|
bicyclic graph |
Keyword:
|
inverse graph |
Keyword:
|
perfect matching |
MSC:
|
05C50 |
MSC:
|
15A09 |
idZBL:
|
Zbl 06819577 |
idMR:
|
MR3736023 |
DOI:
|
10.21136/CMJ.2017.0429-16 |
. |
Date available:
|
2017-11-20T14:59:01Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146971 |
. |
Reference:
|
[1] Akbari, S., Kirkland, S. J.: On unimodular graphs.Linear Algebra Appl. 421 (2007), 3-15. Zbl 1108.05060, MR 2290681, 10.1016/j.laa.2006.10.017 |
Reference:
|
[2] Barik, S., Neumann, M., Pati, S.: On nonsingular trees and a reciprocal eigenvalue property.Linear Multilinear Algebra 54 (2006), 453-465. Zbl 1119.05064, MR 2259602, 10.1080/03081080600792897 |
Reference:
|
[3] Buckley, F., Doty, L. L., Harary, F.: On graphs with signed inverses.Networks 18 (1988), 151-157. Zbl 0646.05061, MR 0953918, 10.1002/net.3230180302 |
Reference:
|
[4] Cvetković, D. M., Gutman, I., Simić, S. K.: On self-pseudo-inverse graphs.Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. Zbl 0437.05047, MR 0580431 |
Reference:
|
[5] Frucht, R., Harary, F.: On the corona of two graphs.Aequationes Mathematicae 4 (1970), 322-325. Zbl 0198.29302, MR 0281659, 10.1007/BF01844162 |
Reference:
|
[6] Godsil, C. D.: Inverses of trees.Combinatorica 5 (1985), 33-39. Zbl 0578.05049, MR 0803237, 10.1007/BF02579440 |
Reference:
|
[7] Harary, F.: On the notion of balance of a signed graph.Mich. Math. J. 2 (1953), 143-146. Zbl 0056.42103, MR 0067468, 10.1307/mmj/1028989917 |
Reference:
|
[8] Harary, F., Minc, H.: Which nonnegative matrices are self-inverse?.Math. Mag. 49 (1976), 91-92. Zbl 0321.15008, MR 0396629, 10.2307/2689442 |
Reference:
|
[9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings.Electron. J. Linear Algebra 29 (2015), 89-101. Zbl 1323.05107, MR 3414587, 10.13001/1081-3810.2865 |
Reference:
|
[10] Panda, S. K., Pati, S.: On some graphs which possess inverses.Linear Multilinear Algebra 64 (2016), 1445-1459. Zbl 1341.05216, MR 3490639, 10.1080/03081087.2015.1091434 |
Reference:
|
[11] Pavlíková, S., Krč-Jediný, J.: On the inverse and the dual index of a tree.Linear Multilinear Algebra 28 (1990), 93-109. Zbl 0745.05018, MR 1077739, 10.1080/03081089008818034 |
Reference:
|
[12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching.Combinatorica 9 (1989), 85-89. Zbl 0688.05056, MR 1010303, 10.1007/BF02122687 |
Reference:
|
[13] Tifenbach, R. M.: Strongly self-dual graphs.Linear Algebra Appl. 435 (2011), 3151-3167. Zbl 1226.05170, MR 2831603, 10.1016/j.laa.2011.05.010 |
Reference:
|
[14] Tifenbach, R. M., Kirkland, S. J.: Directed intervals and the dual of a graph.Linear Algebra Appl. 431 (2009), 792-807. Zbl 1226.05171, MR 2535551, 10.1016/j.laa.2009.03.032 |
Reference:
|
[15] Yates, K.: Hückel Molecular Orbital Theory.Academic Press (1978). 10.1016/b978-0-12-768850-3.x5001-9 |
. |