Previous |  Up |  Next

Article

Title: Symmetric linear operator identities in quasigroups (English)
Author: Akhtar, Reza
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 4
Year: 2017
Pages: 401-417
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a quasigroup. Associativity of the operation on $G$ can be expressed by the symbolic identity $R_x L_y = L_y R_x$ of left and right multiplication maps; likewise, commutativity can be expressed by the identity $L_x=R_x$. In this article, we investigate symmetric linear identities: these are identities in left and right multiplication symbols in which every indeterminate appears exactly once on each side, and whose sides are mirror images of each other. We determine precisely which identities imply associativity and which imply commutativity, providing counterexamples as appropriate. We apply our results to show that there are exactly eight varieties of quasigroups satisfying such identities, and determine all inclusion relations among them. (English)
Keyword: quasigroup
Keyword: linear identity
Keyword: associativity
Keyword: commutativity
MSC: 05C78
idZBL: Zbl 06837075
idMR: MR3737114
DOI: 10.14712/1213-7243.2015.222
.
Date available: 2017-12-12T06:42:00Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146985
.
Reference: [1] Akhtar R.: Generalized associativity in groupoids.Quasigroups Related Systems 24 (2016), 1–6. Zbl 1344.20083, MR 3506153
Reference: [2] Belousov V.D.: Systems of quasigroups with generalized identities.Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146. Zbl 0135.03503, MR 0173724
Reference: [3] Krapež A.: Generalized linear functional equations on almost quasigroups. I. Equations with at most two variables.Aequationes Math. 61 (2001), no. 3, 255–280. Zbl 0993.39022, MR 1833145, 10.1007/s000100050177
Reference: [4] Krapež A.: Quadratic level quasigroup equations with four variables. I.Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. Zbl 1229.39035, MR 2401314, 10.2298/PIM0795053K
Reference: [5] Krapež A.: Quadratic level quasigroup equations with four variables. II.Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. Zbl 1299.20093, MR 3089075, 10.2298/PIM1307029K
Reference: [6] McCune W.: Prover9, equational reasoning tool and Mace4, finite model builder.available at http://www.cs.unm.edu/$\sim$mccune/mace4/.
Reference: [7] Niemenmaa M., Kepka T.: On a general associativity law in groupoids.Monatsh. Math. 113 (1992), 51–57. Zbl 0768.20032, MR 1149060, 10.1007/BF01299305
Reference: [8] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type.Algebra Universalis 54 (2005), no. 3, 259–271. Zbl 1102.20054, MR 2219409, 10.1007/s00012-005-1941-1
Reference: [9] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach.. J. Algebra 293 (2005), 17–33. Zbl 1101.20046, MR 2173964, 10.1016/j.jalgebra.2005.07.011
Reference: [10] Pflugfelder H.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-4_1.pdf 337.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo