Previous |  Up |  Next

Article

Title: Linear extenders and the Axiom of Choice (English)
Author: Morillon, Marianne
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 4
Year: 2017
Pages: 419-434
Summary lang: English
.
Category: math
.
Summary: In set theory without the Axiom of Choice ZF, we prove that for every commutative field $\mathbb K$, the following statement $\mathbf D_{\mathbb K}$: ``On every non null $\mathbb K$-vector space, there exists a non null linear form'' implies the existence of a ``$\mathbb K$-linear extender'' on every vector subspace of a $\mathbb K$-vector space. This solves a question raised in Morillon M., {Linear forms and axioms of choice}, Comment. Math. Univ. Carolin. {50} (2009), no. 3, 421-431. In the second part of the paper, we generalize our results in the case of spherically complete ultrametric valued fields, and show that Ingleton's statement is equivalent to the existence of ``isometric linear extenders''. (English)
Keyword: Axiom of Choice
Keyword: extension of linear forms
Keyword: non-Archimedean fields
Keyword: Ingleton's theorem
MSC: 03E25
MSC: 46S10
idZBL: Zbl 06837076
idMR: MR3737115
DOI: 10.14712/1213-7243.2015.223
.
Date available: 2017-12-12T06:43:08Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146987
.
Reference: [1] Blass A.: Existence of bases implies the axiom of choice.in Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984, pp. 31–33. Zbl 0557.03030, MR 0763890, 10.1090/conm/031/763890
Reference: [2] Bleicher M.N.: Some theorems on vector spaces and the axiom of choice.Fund. Math. 54 (1964), 95–107. Zbl 0118.25503, MR 0164899, 10.4064/fm-54-1-95-107
Reference: [3] Hodges W.: Model Theory.Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. Zbl 1139.03021, MR 1221741
Reference: [4] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059
Reference: [5] Howard P., Tachtsis E.: On vector spaces over specific fields without choice.MLQ Math. Log. Q. 59 (2013), no. 3, 128–146. Zbl 1278.03082, MR 3066735, 10.1002/malq.201200049
Reference: [6] Ingleton A.W.: The Hahn-Banach theorem for non-Archimedean valued fields.Proc. Cambridge Philos. Soc. 48 (1952), 41–45. Zbl 0046.12001, MR 0045939
Reference: [7] Jech T.J.: The Axiom of Choice.North-Holland Publishing Co., Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [8] Luxemburg W.A.J.: Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem.in Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123–137. Zbl 0181.40101, MR 0237327
Reference: [9] Morillon M.: Linear forms and axioms of choice.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431. Zbl 1212.03034, MR 2573415
Reference: [10] Narici L., Beckenstein E., Bachman G.: Functional Analysis and Valuation Theory.Pure and Applied Mathematics, 5, Marcel Dekker, Inc., New York, 1971. Zbl 0218.46004, MR 0361697
Reference: [11] Schneider P.: Nonarchimedean Functional Analysis.Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl 0998.46044, MR 1869547
Reference: [12] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker, Inc., New York, 1978. Zbl 0396.46061, MR 0512894
Reference: [13] van Rooij A.C.M.: The axiom of choice in $p$-adic functional analysis.In $p$-adic functional analysis (Laredo, 1990), Lecture Notes in Pure and Appl. Math., 137, Dekker, New York, 1992, pp. 151–156. Zbl 0781.46055, MR 1152576
Reference: [14] Warner S.: Topological Fields.North-Holland Mathematics Studies, 157; Notas de Matemática [Mathematical Notes], 126; North-Holland Publishing Co., Amsterdam, 1989. Zbl 0683.12014, MR 1002951
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-4_2.pdf 344.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo