Title:
|
Linear extenders and the Axiom of Choice (English) |
Author:
|
Morillon, Marianne |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
419-434 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In set theory without the Axiom of Choice ZF, we prove that for every commutative field $\mathbb K$, the following statement $\mathbf D_{\mathbb K}$: ``On every non null $\mathbb K$-vector space, there exists a non null linear form'' implies the existence of a ``$\mathbb K$-linear extender'' on every vector subspace of a $\mathbb K$-vector space. This solves a question raised in Morillon M., {Linear forms and axioms of choice}, Comment. Math. Univ. Carolin. {50} (2009), no. 3, 421-431. In the second part of the paper, we generalize our results in the case of spherically complete ultrametric valued fields, and show that Ingleton's statement is equivalent to the existence of ``isometric linear extenders''. (English) |
Keyword:
|
Axiom of Choice |
Keyword:
|
extension of linear forms |
Keyword:
|
non-Archimedean fields |
Keyword:
|
Ingleton's theorem |
MSC:
|
03E25 |
MSC:
|
46S10 |
idZBL:
|
Zbl 06837076 |
idMR:
|
MR3737115 |
DOI:
|
10.14712/1213-7243.2015.223 |
. |
Date available:
|
2017-12-12T06:43:08Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146987 |
. |
Reference:
|
[1] Blass A.: Existence of bases implies the axiom of choice.in Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, Amer. Math. Soc., Providence, RI, 1984, pp. 31–33. Zbl 0557.03030, MR 0763890, 10.1090/conm/031/763890 |
Reference:
|
[2] Bleicher M.N.: Some theorems on vector spaces and the axiom of choice.Fund. Math. 54 (1964), 95–107. Zbl 0118.25503, MR 0164899, 10.4064/fm-54-1-95-107 |
Reference:
|
[3] Hodges W.: Model Theory.Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993. Zbl 1139.03021, MR 1221741 |
Reference:
|
[4] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, RI, 1998. Zbl 0947.03001, MR 1637107, 10.1090/surv/059 |
Reference:
|
[5] Howard P., Tachtsis E.: On vector spaces over specific fields without choice.MLQ Math. Log. Q. 59 (2013), no. 3, 128–146. Zbl 1278.03082, MR 3066735, 10.1002/malq.201200049 |
Reference:
|
[6] Ingleton A.W.: The Hahn-Banach theorem for non-Archimedean valued fields.Proc. Cambridge Philos. Soc. 48 (1952), 41–45. Zbl 0046.12001, MR 0045939 |
Reference:
|
[7] Jech T.J.: The Axiom of Choice.North-Holland Publishing Co., Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[8] Luxemburg W.A.J.: Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem.in Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123–137. Zbl 0181.40101, MR 0237327 |
Reference:
|
[9] Morillon M.: Linear forms and axioms of choice.Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431. Zbl 1212.03034, MR 2573415 |
Reference:
|
[10] Narici L., Beckenstein E., Bachman G.: Functional Analysis and Valuation Theory.Pure and Applied Mathematics, 5, Marcel Dekker, Inc., New York, 1971. Zbl 0218.46004, MR 0361697 |
Reference:
|
[11] Schneider P.: Nonarchimedean Functional Analysis.Springer Monographs in Mathematics, Springer, Berlin, 2002. Zbl 0998.46044, MR 1869547 |
Reference:
|
[12] van Rooij A.C.M.: Non-Archimedean Functional Analysis.Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker, Inc., New York, 1978. Zbl 0396.46061, MR 0512894 |
Reference:
|
[13] van Rooij A.C.M.: The axiom of choice in $p$-adic functional analysis.In $p$-adic functional analysis (Laredo, 1990), Lecture Notes in Pure and Appl. Math., 137, Dekker, New York, 1992, pp. 151–156. Zbl 0781.46055, MR 1152576 |
Reference:
|
[14] Warner S.: Topological Fields.North-Holland Mathematics Studies, 157; Notas de Matemática [Mathematical Notes], 126; North-Holland Publishing Co., Amsterdam, 1989. Zbl 0683.12014, MR 1002951 |
. |