Previous |  Up |  Next

Article

Title: Sufficient conditions for the solvability of some third order functional boundary value problems on the half-line (English)
Author: Carrasco, Hugo
Author: Minhós, Feliz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 4
Year: 2017
Pages: 443-459
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the existence of bounded or unbounded solutions to third-order boundary value problem on the half-line with functional boundary conditions. The arguments are based on the Green functions, a Nagumo condition, Schauder fixed point theorem and lower and upper solutions method. An application to a Falkner-Skan equation with functional boundary conditions is given to illustrate our results. (English)
Keyword: functional boundary conditions
Keyword: unbounded solutions
Keyword: half-line
Keyword: upper and lower solutions
Keyword: Nagumo condition
Keyword: Green's function
Keyword: fixed point theory
Keyword: Falkner-Skan equation
MSC: 34B10
MSC: 34B15
MSC: 34B27
MSC: 34B40
MSC: 34B60
MSC: 45G10
idZBL: Zbl 06837078
idMR: MR3737117
DOI: 10.14712/1213-7243.2015.220
.
Date available: 2017-12-12T06:45:45Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146989
.
Reference: [1] Agarwal R.P., O'Regan D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publisher, Glasgow, 2001. Zbl 0988.34002, MR 1845855
Reference: [2] Boucherif A.: Second order boundary value problems with integral boundary conditions.Nonlinear Anal. 70 (2009) no. 1, 364–371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007
Reference: [3] Cabada A., Fialho J., Minhós F.: Non ordered lower and upper solutions to fourth order functional BVP.Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218. MR 2987401
Reference: [4] Cabada A., Minhós F.: Fully nonlinear fourth-order equations with functional boundary conditions.J. Math. Anal. Appl. 340 (2008), 239–251. Zbl 1138.34008, MR 2376151, 10.1016/j.jmaa.2007.08.026
Reference: [5] Corduneanu C.: Integral Equations and Applications.Cambridge University Press, Cambridge, 1991. Zbl 1156.45001, MR 1109491
Reference: [6] Feng H., Ji D., Ge W.: Existence and uniqueness of solutions for a fourth-order boundary value problem.Nonlinear Anal. 70 (2009), 3761–3566. MR 2502764, 10.1016/j.na.2008.07.013
Reference: [7] Fialho J., Minhós F.: Higher order functional boundary value problems without monotone assumptions.Bound. Value Probl. 2013, 2013:81. Zbl 1293.34027, MR 3055842
Reference: [8] Fu D., Ding W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces.Adv. Difference Equ. 2013, 2013:65. MR 3044690
Reference: [9] Graef J., Kong L., Minhós F., Fialho J.: On the lower and upper solution method for higher order functional boundary value problems.Appl. Anal. Discrete Math. 5 (2011), no. 1, 133–146. Zbl 1289.34054, MR 2809041, 10.2298/AADM110221010G
Reference: [10] Graef J., Kong L., Minhós F.: Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions.Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383. MR 2775180, 10.1007/s12591-010-0071-1
Reference: [11] Han J., Liu Y., Zhao J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations.Appl. Math. Comput. 218 (2012), 5002–5009. MR 2870024
Reference: [12] Jiang J., Liu L., Wu Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions.Appl. Math. Comput. 215 (2009), 1573–1582. MR 2571646
Reference: [13] Kong L., Wong J.: Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions.J. Math. Anal. Appl. 367 (2010), 588–611. Zbl 1197.34035, MR 2607284, 10.1016/j.jmaa.2010.01.063
Reference: [14] Lu H., Sun L., Sun J.: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed.Bound. Value Probl. 2012, 2012:56. MR 2942969
Reference: [15] Minhós F., Fialho J.: On the solvability of some fourth-order equations with functional boundary conditions.Discrete Contin. Dyn. Syst., 2009, suppl., 564–573. Zbl 1192.34023, MR 2648180
Reference: [16] Pei M., Chang S., Oh Y.S.: Solvability of right focal boundary value problems with superlinear growth conditions.Bound. Value Probl. 2012, 2012:60. MR 2965952
Reference: [17] Yoruk F., Aykut Hamal N.: Second-order boundary value problems with integral boundary conditions on the real line.Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13. Zbl 1292.34017, MR 3159428
Reference: [18] Wang M.X., Cabada A., Nieto J.J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58 (1993), 221–235. Zbl 0789.34027, MR 1244394, 10.4064/ap-58-3-221-235
Reference: [19] Zeidler E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems.Springer, New York, 1986. Zbl 0583.47050, MR 0816732
Reference: [20] Zhang Z., Zhang C.: Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids.Nonlinear Anal. 102 (2014), 1–13. Zbl 1292.76005, MR 3182794
Reference: [21] Zhu S., Wu Q., Cheng X.: Numerical solution of the Falkner-Skan equation based on quasilinearization.Appl. Math. Comput. 215 (2009), 2472–2485. MR 2563461
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-4_4.pdf 301.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo