Title:
|
Sufficient conditions for the solvability of some third order functional boundary value problems on the half-line (English) |
Author:
|
Carrasco, Hugo |
Author:
|
Minhós, Feliz |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
443-459 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is concerned with the existence of bounded or unbounded solutions to third-order boundary value problem on the half-line with functional boundary conditions. The arguments are based on the Green functions, a Nagumo condition, Schauder fixed point theorem and lower and upper solutions method. An application to a Falkner-Skan equation with functional boundary conditions is given to illustrate our results. (English) |
Keyword:
|
functional boundary conditions |
Keyword:
|
unbounded solutions |
Keyword:
|
half-line |
Keyword:
|
upper and lower solutions |
Keyword:
|
Nagumo condition |
Keyword:
|
Green's function |
Keyword:
|
fixed point theory |
Keyword:
|
Falkner-Skan equation |
MSC:
|
34B10 |
MSC:
|
34B15 |
MSC:
|
34B27 |
MSC:
|
34B40 |
MSC:
|
34B60 |
MSC:
|
45G10 |
idZBL:
|
Zbl 06837078 |
idMR:
|
MR3737117 |
DOI:
|
10.14712/1213-7243.2015.220 |
. |
Date available:
|
2017-12-12T06:45:45Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146989 |
. |
Reference:
|
[1] Agarwal R.P., O'Regan D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publisher, Glasgow, 2001. Zbl 0988.34002, MR 1845855 |
Reference:
|
[2] Boucherif A.: Second order boundary value problems with integral boundary conditions.Nonlinear Anal. 70 (2009) no. 1, 364–371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007 |
Reference:
|
[3] Cabada A., Fialho J., Minhós F.: Non ordered lower and upper solutions to fourth order functional BVP.Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218. MR 2987401 |
Reference:
|
[4] Cabada A., Minhós F.: Fully nonlinear fourth-order equations with functional boundary conditions.J. Math. Anal. Appl. 340 (2008), 239–251. Zbl 1138.34008, MR 2376151, 10.1016/j.jmaa.2007.08.026 |
Reference:
|
[5] Corduneanu C.: Integral Equations and Applications.Cambridge University Press, Cambridge, 1991. Zbl 1156.45001, MR 1109491 |
Reference:
|
[6] Feng H., Ji D., Ge W.: Existence and uniqueness of solutions for a fourth-order boundary value problem.Nonlinear Anal. 70 (2009), 3761–3566. MR 2502764, 10.1016/j.na.2008.07.013 |
Reference:
|
[7] Fialho J., Minhós F.: Higher order functional boundary value problems without monotone assumptions.Bound. Value Probl. 2013, 2013:81. Zbl 1293.34027, MR 3055842 |
Reference:
|
[8] Fu D., Ding W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces.Adv. Difference Equ. 2013, 2013:65. MR 3044690 |
Reference:
|
[9] Graef J., Kong L., Minhós F., Fialho J.: On the lower and upper solution method for higher order functional boundary value problems.Appl. Anal. Discrete Math. 5 (2011), no. 1, 133–146. Zbl 1289.34054, MR 2809041, 10.2298/AADM110221010G |
Reference:
|
[10] Graef J., Kong L., Minhós F.: Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions.Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383. MR 2775180, 10.1007/s12591-010-0071-1 |
Reference:
|
[11] Han J., Liu Y., Zhao J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations.Appl. Math. Comput. 218 (2012), 5002–5009. MR 2870024 |
Reference:
|
[12] Jiang J., Liu L., Wu Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions.Appl. Math. Comput. 215 (2009), 1573–1582. MR 2571646 |
Reference:
|
[13] Kong L., Wong J.: Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions.J. Math. Anal. Appl. 367 (2010), 588–611. Zbl 1197.34035, MR 2607284, 10.1016/j.jmaa.2010.01.063 |
Reference:
|
[14] Lu H., Sun L., Sun J.: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed.Bound. Value Probl. 2012, 2012:56. MR 2942969 |
Reference:
|
[15] Minhós F., Fialho J.: On the solvability of some fourth-order equations with functional boundary conditions.Discrete Contin. Dyn. Syst., 2009, suppl., 564–573. Zbl 1192.34023, MR 2648180 |
Reference:
|
[16] Pei M., Chang S., Oh Y.S.: Solvability of right focal boundary value problems with superlinear growth conditions.Bound. Value Probl. 2012, 2012:60. MR 2965952 |
Reference:
|
[17] Yoruk F., Aykut Hamal N.: Second-order boundary value problems with integral boundary conditions on the real line.Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13. Zbl 1292.34017, MR 3159428 |
Reference:
|
[18] Wang M.X., Cabada A., Nieto J.J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions.Ann. Polon. Math. 58 (1993), 221–235. Zbl 0789.34027, MR 1244394, 10.4064/ap-58-3-221-235 |
Reference:
|
[19] Zeidler E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems.Springer, New York, 1986. Zbl 0583.47050, MR 0816732 |
Reference:
|
[20] Zhang Z., Zhang C.: Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids.Nonlinear Anal. 102 (2014), 1–13. Zbl 1292.76005, MR 3182794 |
Reference:
|
[21] Zhu S., Wu Q., Cheng X.: Numerical solution of the Falkner-Skan equation based on quasilinearization.Appl. Math. Comput. 215 (2009), 2472–2485. MR 2563461 |
. |