Previous |  Up |  Next

Article

Title: Characterization of functions whose forward differences are exponential polynomials (English)
Author: Almira, J. M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 4
Year: 2017
Pages: 435-442
Summary lang: English
.
Category: math
.
Summary: Given $\{h_1,\cdots,h_{t}\}$ a finite subset of $\mathbb{R}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb{R}^d$ with the property that the forward differences $\Delta_{h_k}^{m_k}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots,m_t$. (English)
Keyword: functional equations
Keyword: exponential polynomials
Keyword: generalized functions
Keyword: forward differences
MSC: 39A70
MSC: 39B52
idZBL: Zbl 06837077
idMR: MR3737116
DOI: 10.14712/1213-7243.2015.224
.
Date available: 2017-12-12T06:43:59Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146988
.
Reference: [1] Aksoy A., Almira J.M.: On Montel and Montel-Popoviciu theorems in several variables.Aequationes Math. 89 (2015), no. 5, 1335–1357. Zbl 1337.47051, MR 3390165, 10.1007/s00010-014-0329-8
Reference: [2] Almira J.M.: Montel's theorem and subspaces of distributions which are $\Delta^m$-invariant.Numer. Funct. Anal. Optim. 35 (4) (2014), 389–403. Zbl 1327.47005, MR 3177061, 10.1080/01630563.2013.813537
Reference: [3] Almira J.M., Abu-Helaiel K.F.: On Montel's theorem in several variables.Carpathian J. Math. 31 (2015), 1–10. Zbl 1349.47007, MR 3408590
Reference: [4] Almira J.M., Székelyhidi L.: Local polynomials and the Montel theorem.Aequationes Math. 89 (2015), 329-338. Zbl 1321.43007, MR 3340213, 10.1007/s00010-014-0308-0
Reference: [5] Almira J.M., Székelyhidi L.: Montel–type theorems for exponential polynomials.Demonstr. Math. 49 (2016), no. 2, 197–212. Zbl 1344.43002, MR 3507933
Reference: [6] Anselone P.M., Korevaar J.: Translation invariant subspaces of finite dimension.Proc. Amer. Math. Soc. 15 (1964), 747–752. Zbl 0138.37903, MR 0169048, 10.1090/S0002-9939-1964-0169048-7
Reference: [7] Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers. Fifth edition.The Clarendon Press, Oxford University Press, New York, 1979. MR 0568909
Reference: [8] Waldschmidt M.: Topologie des Points Rationnels.Cours de Troisi\`{e}me Cycle 1994/95 Université P. et M. Curie (Paris VI), 1995.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-4_3.pdf 260.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo