Previous |  Up |  Next

Article

Title: Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems (English)
Author: Dolejší, Vít
Author: Roskovec, Filip
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 6
Year: 2017
Pages: 579-605
Summary lang: English
.
Category: math
.
Summary: We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest. (English)
Keyword: quantity of interest
Keyword: discontinuous Galerkin
Keyword: a posteriori error estimate
Keyword: algebraic error
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06861547
idMR: MR3745742
DOI: 10.21136/AM.2017.0173-17
.
Date available: 2018-01-02T13:43:02Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146999
.
Reference: [1] Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations.Int. J. Numer. Methods Eng. 89 (2012), 1605-1634. Zbl 1242.65232, MR 2899560, 10.1002/nme.3276
Reference: [2] Arioli, M., Liesen, J., Międlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems.GAMM-Mitt. 36 (2013), 102-129. Zbl 1279.65130, MR 3095916, 10.1002/gamm.201310006
Reference: [3] Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations.SIAM J. Numer. Anal. 15 (1978), 736-754. Zbl 0398.65069, MR 0483395, 10.1137/0715049
Reference: [4] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations.Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel (2003). Zbl 1020.65058, MR 1960405, 10.1007/978-3-0348-7605-6
Reference: [5] Bank, R. E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations.Math. Comput. 44 (1985), 283-301. Zbl 0569.65079, MR 0777265, 10.2307/2007953
Reference: [6] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods.Acta Numerica 10 (2001), 1-102. Zbl 1105.65349, MR 2009692, 10.1017/S0962492901000010
Reference: [7] Dolejší, V.: ANGENER---software package.Charles University Prague, Faculty of Mathematics and Physics, www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm} (2000).
Reference: [8] Dolejší, V.: $hp$-DGFEM for nonlinear convection-diffusion problems.Math. Comput. Simul. 87 (2013), 87-118. MR 3046879, 10.1016/j.matcom.2013.03.001
Reference: [9] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow.Springer Series in Computational Mathematics 48, Springer, Cham (2015). Zbl 06467550, MR 3363720, 10.1007/978-3-319-19267-3
Reference: [10] Dolejší, V., May, G., Roskovec, F., Šolín, P.: Anisotropic $hp$-mesh optimization technique based on the continuous mesh and error models.Comput. Math. Appl. 74 (2017), 45-63. Zbl 06786795, MR 3654083, 10.1016/j.camwa.2016.12.015
Reference: [11] Dolejší, V., Roskovec, F.: Goal oriented a posteriori error estimates for the discontinuos Galerkin method.Programs and Algorithms of Numerical Mathematics 18, Proceedings of Seminar, Janov nad Nisou 2016 Institute of Mathematics CAS, Praha J. Chleboun et al. (2017), 15-23. MR 3791862, 10.21136/panm.2016.02
Reference: [12] Dolejší, V., Šolín, P.: $hp$-discontinuous Galerkin method based on local higher order reconstruction.Appl. Math. Comput. 279 (2016), 219-235. MR 3458017, 10.1016/j.amc.2016.01.024
Reference: [13] Giles, M., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality.Acta Numerica 11 (2002), 145-236. Zbl 1105.65350, MR 2009374, 10.1017/S096249290200003X
Reference: [14] Greenbaum, A., Pták, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES.SIAM J. Matrix Anal. Appl. 17 (1996), 465-469. Zbl 0857.65029, MR 1397238, 10.1137/S0895479894275030
Reference: [15] Harriman, K., Gavaghan, D., Süli, E.: The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method.Technical Report, Oxford University Computing Laboratory, Oxford (2004).
Reference: [16] Harriman, K., Houston, P., Senior, B., Süli, E.: $hp$-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form.Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong 2002 Contemp. Math. 330, American Mathematical Society, Providence S. Y. Cheng et al. (2003), 89-119. Zbl 1037.65117, MR 2011714, 10.1090/conm/330/05886
Reference: [17] Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations.SIAM J. Numer. Anal. 45 (2007), 2671-2696. Zbl 1189.76341, MR 2361907, 10.1137/060665117
Reference: [18] Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation.Int. J. Numer. Anal. Model. 3 (2006), 141-162. Zbl 1152.76429, MR 2237622
Reference: [19] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems.SIAM J. Numer. Anal. 39 (2002), 2133-2163. Zbl 1015.65067, MR 1897953, 10.1137/S0036142900374111
Reference: [20] Huynh, H. T.: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion.18th AIAA Computational Fluid Dynamics Conference, Miami, Florida, 2007. 10.2514/6.2007-4079
Reference: [21] Meidner, D., Rannacher, R., Vihharev, J.: Goal-oriented error control of the iterative solution of finite element equations.J. Numer. Anal. 17 (2009), 143-172. Zbl 1169.65340, MR 2543373, 10.1515/JNUM.2009.009
Reference: [22] Nochetto, R. H., Veeser, A., Verani, M.: A safeguarded dual weighted residual method.IMA J. Numer. Anal. 29 (2009), 126-140. Zbl 1168.65070, MR 2470943, 10.1093/imanum/drm026
Reference: [23] Rannacher, R., Vihharev, J.: Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors.J. Numer. Math. 21 (2013), 23-62. Zbl 1267.65184, MR 3043432, 10.1515/jnum-2013-0002
Reference: [24] Richter, T., Wick, T.: Variational localizations of the dual weighted residual estimator.J. Comput. Appl. Math. 279 (2015), 192-208. Zbl 1306.65283, MR 3293320, 10.1016/j.cam.2014.11.008
Reference: [25] Šolín, P., Demkowicz, L.: Goal-oriented $hp$-adaptivity for elliptic problems.Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. Zbl 1044.65082, MR 2033961, 10.1016/j.cma.2003.09.015
Reference: [26] Süli, E., Houston, P., Schwab, C.: $hp$-DGFEM for partial differential equations with nonnegative characteristic form.B. Cockburn et al. Discontinuous Galerkin Methods. Theory, Computation and Applications, Newport 1999 Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin (2000), 221-230. Zbl 0946.65102, MR 1842176, 10.1007/978-3-642-59721-3_16
.

Files

Files Size Format View
AplMat_62-2017-6_4.pdf 1.151Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo